Loading…
Nonparametric instrumental variable derivative estimation
The focus of this paper is the nonparametric estimation of the marginal effects (i.e. first partial derivatives) of an instrumental regression function π defined by conditional moment restrictions that stem from a structural econometric model [Formula omitted.] , and involve endogenous variables Y a...
Saved in:
Published in: | Journal of nonparametric statistics 2018-04, Vol.30 (2), p.368-391 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593 |
container_end_page | 391 |
container_issue | 2 |
container_start_page | 368 |
container_title | Journal of nonparametric statistics |
container_volume | 30 |
creator | Florens, J. P. Racine, J. S. Centorrino, S. |
description | The focus of this paper is the nonparametric estimation of the marginal effects (i.e. first partial derivatives) of an instrumental regression function π defined by conditional moment restrictions that stem from a structural econometric model [Formula omitted.] , and involve endogenous variables Y and Z and instruments W. The derivative function [Formula omitted.] is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Landweber-Fridman regularisation. We provide theoretical underpinnings of the proposed approach, examine finite-sample performance, and consider an illustrative application. |
doi_str_mv | 10.1080/10485252.2018.1428745 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2030749458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030749458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593</originalsourceid><addsrcrecordid>eNo1kEtLxDAUhYMoOI7-BKHguvXePJpkKYMvGHSj65BpUujQl0lb8N-bMuPqnsXHPYePkHuEAkHBIwJXggpaUEBVIKdKcnFBNghU58AQL9fMVb5C1-QmxiMAspLBhuiPoR9tsJ2fQlNlTR-nMHe-n2ybLTY09tD6zPnQLHZqFp_5ODVdikN_S65q20Z_d75b8v3y_LV7y_efr--7p31eUYVTLl3pkKV9jkoBWiK3pWWuFAodCs9k7VgtZKUPvGaVFpqXFiTYMg1PlGZb8nD6O4bhZ0795jjMoU-VhgIDyTUXKlHiRFVhiDH42owhDQ2_BsGslsy_JbNaMmdL7A_PG1kh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030749458</pqid></control><display><type>article</type><title>Nonparametric instrumental variable derivative estimation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Florens, J. P. ; Racine, J. S. ; Centorrino, S.</creator><creatorcontrib>Florens, J. P. ; Racine, J. S. ; Centorrino, S.</creatorcontrib><description>The focus of this paper is the nonparametric estimation of the marginal effects (i.e. first partial derivatives) of an instrumental regression function π defined by conditional moment restrictions that stem from a structural econometric model [Formula omitted.] , and involve endogenous variables Y and Z and instruments W. The derivative function [Formula omitted.] is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Landweber-Fridman regularisation. We provide theoretical underpinnings of the proposed approach, examine finite-sample performance, and consider an illustrative application.</description><identifier>ISSN: 1048-5252</identifier><identifier>EISSN: 1029-0311</identifier><identifier>DOI: 10.1080/10485252.2018.1428745</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Ltd</publisher><subject>Econometrics ; Economic models ; Ill posed problems ; Inverse problems ; Nonparametric statistics ; Regularization</subject><ispartof>Journal of nonparametric statistics, 2018-04, Vol.30 (2), p.368-391</ispartof><rights>American Statistical Association and Taylor & Francis 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593</citedby><cites>FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593</cites><orcidid>0000-0001-8713-7197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Florens, J. P.</creatorcontrib><creatorcontrib>Racine, J. S.</creatorcontrib><creatorcontrib>Centorrino, S.</creatorcontrib><title>Nonparametric instrumental variable derivative estimation</title><title>Journal of nonparametric statistics</title><description>The focus of this paper is the nonparametric estimation of the marginal effects (i.e. first partial derivatives) of an instrumental regression function π defined by conditional moment restrictions that stem from a structural econometric model [Formula omitted.] , and involve endogenous variables Y and Z and instruments W. The derivative function [Formula omitted.] is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Landweber-Fridman regularisation. We provide theoretical underpinnings of the proposed approach, examine finite-sample performance, and consider an illustrative application.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Ill posed problems</subject><subject>Inverse problems</subject><subject>Nonparametric statistics</subject><subject>Regularization</subject><issn>1048-5252</issn><issn>1029-0311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLxDAUhYMoOI7-BKHguvXePJpkKYMvGHSj65BpUujQl0lb8N-bMuPqnsXHPYePkHuEAkHBIwJXggpaUEBVIKdKcnFBNghU58AQL9fMVb5C1-QmxiMAspLBhuiPoR9tsJ2fQlNlTR-nMHe-n2ybLTY09tD6zPnQLHZqFp_5ODVdikN_S65q20Z_d75b8v3y_LV7y_efr--7p31eUYVTLl3pkKV9jkoBWiK3pWWuFAodCs9k7VgtZKUPvGaVFpqXFiTYMg1PlGZb8nD6O4bhZ0795jjMoU-VhgIDyTUXKlHiRFVhiDH42owhDQ2_BsGslsy_JbNaMmdL7A_PG1kh</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Florens, J. P.</creator><creator>Racine, J. S.</creator><creator>Centorrino, S.</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8713-7197</orcidid></search><sort><creationdate>20180403</creationdate><title>Nonparametric instrumental variable derivative estimation</title><author>Florens, J. P. ; Racine, J. S. ; Centorrino, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Ill posed problems</topic><topic>Inverse problems</topic><topic>Nonparametric statistics</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florens, J. P.</creatorcontrib><creatorcontrib>Racine, J. S.</creatorcontrib><creatorcontrib>Centorrino, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of nonparametric statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florens, J. P.</au><au>Racine, J. S.</au><au>Centorrino, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric instrumental variable derivative estimation</atitle><jtitle>Journal of nonparametric statistics</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>368</spage><epage>391</epage><pages>368-391</pages><issn>1048-5252</issn><eissn>1029-0311</eissn><abstract>The focus of this paper is the nonparametric estimation of the marginal effects (i.e. first partial derivatives) of an instrumental regression function π defined by conditional moment restrictions that stem from a structural econometric model [Formula omitted.] , and involve endogenous variables Y and Z and instruments W. The derivative function [Formula omitted.] is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Landweber-Fridman regularisation. We provide theoretical underpinnings of the proposed approach, examine finite-sample performance, and consider an illustrative application.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/10485252.2018.1428745</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8713-7197</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-5252 |
ispartof | Journal of nonparametric statistics, 2018-04, Vol.30 (2), p.368-391 |
issn | 1048-5252 1029-0311 |
language | eng |
recordid | cdi_proquest_journals_2030749458 |
source | Taylor and Francis Science and Technology Collection |
subjects | Econometrics Economic models Ill posed problems Inverse problems Nonparametric statistics Regularization |
title | Nonparametric instrumental variable derivative estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20instrumental%20variable%20derivative%20estimation&rft.jtitle=Journal%20of%20nonparametric%20statistics&rft.au=Florens,%20J.%20P.&rft.date=2018-04-03&rft.volume=30&rft.issue=2&rft.spage=368&rft.epage=391&rft.pages=368-391&rft.issn=1048-5252&rft.eissn=1029-0311&rft_id=info:doi/10.1080/10485252.2018.1428745&rft_dat=%3Cproquest_cross%3E2030749458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-7d6d13852d27509714a6a3d6581d15e37fd3f57c9b4f3c95946a070a6031d6593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2030749458&rft_id=info:pmid/&rfr_iscdi=true |