Loading…
Numerical evaluation of optimal approaches for electro-osmosis dewatering
A newly developed numerical model is used to identify and evaluate optimum electrode configurations for electro-osmosis dewatering, as well as to evaluate approaches such as current intermittence and current reversal. Various electrode configurations, electrode spacings, and voltage gradients are st...
Saved in:
Published in: | Drying technology 2018-06, Vol.36 (8), p.973-989 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A newly developed numerical model is used to identify and evaluate optimum electrode configurations for electro-osmosis dewatering, as well as to evaluate approaches such as current intermittence and current reversal. Various electrode configurations, electrode spacings, and voltage gradients are studied numerically using 3D models with a cubic domain and vertically installed tube electrodes. The results indicate that, with more anodes installed, one can expect more water to drain out and a more uniform surface settlement, although a greater energy consumption is then required. A 2D square domain is used to study current intermittence and current reversal. Current intermittence allows more water to be drained out and has a higher energy efficiency compared to a continuous current, although it consumes more energy. Polarity reversal is also shown to be more efficient than a continuous current supply. |
---|---|
ISSN: | 0737-3937 1532-2300 |
DOI: | 10.1080/07373937.2017.1367693 |