Loading…

Variable-rate nitrogen fertilization of winter wheat under high spatial resolution

Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m...

Full description

Saved in:
Bibliographic Details
Published in:Precision agriculture 2018-06, Vol.19 (3), p.570-587
Main Authors: Stamatiadis, S., Schepers, J. S., Evangelou, E., Tsadilas, C., Glampedakis, A., Glampedakis, M., Dercas, N., Spyropoulos, N., Dalezios, N. R., Eskridge, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3
cites cdi_FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3
container_end_page 587
container_issue 3
container_start_page 570
container_title Precision agriculture
container_volume 19
creator Stamatiadis, S.
Schepers, J. S.
Evangelou, E.
Tsadilas, C.
Glampedakis, A.
Glampedakis, M.
Dercas, N.
Spyropoulos, N.
Dalezios, N. R.
Eskridge, K.
description Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.
doi_str_mv 10.1007/s11119-017-9540-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2031667976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031667976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdfQmk8d0KcUXFARRtyGTSdqUcaYmGYr-elNGcOXd3LP4zjlwELqkcE0B1E2i5RYEqCILwYGoIzSjQlWESlofF13VgjAm5Ck6S2kLUFyczdDLu4nBNJ0j0WSH-5DjsHY99i7m0IVvk8PQ48Hjfeizi3i_cSbjsW-L3oT1BqddQUyHo0tDNx7oc3TiTZfcxe-fo7f7u9flI1k9Pzwtb1fEVlRmUhmu2lpypQRQZgx3jaACuG8MWOGhMg7qhhcEVGs9l5ZZ7q1ovBGukb6ao6spdxeHz9GlrLfDGPtSqRmUCqkWShaKTpSNQ0rReb2L4cPEL01BH6bT03S6TKcP02lVPGzypML2axf_kv83_QArLnKT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031667976</pqid></control><display><type>article</type><title>Variable-rate nitrogen fertilization of winter wheat under high spatial resolution</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Stamatiadis, S. ; Schepers, J. S. ; Evangelou, E. ; Tsadilas, C. ; Glampedakis, A. ; Glampedakis, M. ; Dercas, N. ; Spyropoulos, N. ; Dalezios, N. R. ; Eskridge, K.</creator><creatorcontrib>Stamatiadis, S. ; Schepers, J. S. ; Evangelou, E. ; Tsadilas, C. ; Glampedakis, A. ; Glampedakis, M. ; Dercas, N. ; Spyropoulos, N. ; Dalezios, N. R. ; Eskridge, K.</creatorcontrib><description>Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-017-9540-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agricultural practices ; Agricultural production ; Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Computer Science ; Crop yield ; Crops ; Data processing ; Economics ; Environmental impact ; Farmers ; Fertilization ; Fertilizers ; Grain ; Leaching ; Life Sciences ; Nitrogen ; Performance assessment ; Physics ; Precipitation ; Profitability ; Remote Sensing/Photogrammetry ; Seasons ; Sensors ; Signal processing ; Soil analysis ; Soil Science &amp; Conservation ; Soil water ; Spatial data ; Spatial discrimination ; Spatial resolution ; Statistics for Engineering ; Triticum aestivum ; Water balance ; Wheat ; Winter ; Winter wheat</subject><ispartof>Precision agriculture, 2018-06, Vol.19 (3), p.570-587</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Precision Agriculture is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3</citedby><cites>FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3</cites><orcidid>0000-0001-7286-4105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2031667976/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2031667976?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Stamatiadis, S.</creatorcontrib><creatorcontrib>Schepers, J. S.</creatorcontrib><creatorcontrib>Evangelou, E.</creatorcontrib><creatorcontrib>Tsadilas, C.</creatorcontrib><creatorcontrib>Glampedakis, A.</creatorcontrib><creatorcontrib>Glampedakis, M.</creatorcontrib><creatorcontrib>Dercas, N.</creatorcontrib><creatorcontrib>Spyropoulos, N.</creatorcontrib><creatorcontrib>Dalezios, N. R.</creatorcontrib><creatorcontrib>Eskridge, K.</creatorcontrib><title>Variable-rate nitrogen fertilization of winter wheat under high spatial resolution</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.</description><subject>Agricultural practices</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Data processing</subject><subject>Economics</subject><subject>Environmental impact</subject><subject>Farmers</subject><subject>Fertilization</subject><subject>Fertilizers</subject><subject>Grain</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>Performance assessment</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Profitability</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Seasons</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Soil analysis</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil water</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Statistics for Engineering</subject><subject>Triticum aestivum</subject><subject>Water balance</subject><subject>Wheat</subject><subject>Winter</subject><subject>Winter wheat</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdfQmk8d0KcUXFARRtyGTSdqUcaYmGYr-elNGcOXd3LP4zjlwELqkcE0B1E2i5RYEqCILwYGoIzSjQlWESlofF13VgjAm5Ck6S2kLUFyczdDLu4nBNJ0j0WSH-5DjsHY99i7m0IVvk8PQ48Hjfeizi3i_cSbjsW-L3oT1BqddQUyHo0tDNx7oc3TiTZfcxe-fo7f7u9flI1k9Pzwtb1fEVlRmUhmu2lpypQRQZgx3jaACuG8MWOGhMg7qhhcEVGs9l5ZZ7q1ovBGukb6ao6spdxeHz9GlrLfDGPtSqRmUCqkWShaKTpSNQ0rReb2L4cPEL01BH6bT03S6TKcP02lVPGzypML2axf_kv83_QArLnKT</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Stamatiadis, S.</creator><creator>Schepers, J. S.</creator><creator>Evangelou, E.</creator><creator>Tsadilas, C.</creator><creator>Glampedakis, A.</creator><creator>Glampedakis, M.</creator><creator>Dercas, N.</creator><creator>Spyropoulos, N.</creator><creator>Dalezios, N. R.</creator><creator>Eskridge, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7286-4105</orcidid></search><sort><creationdate>20180601</creationdate><title>Variable-rate nitrogen fertilization of winter wheat under high spatial resolution</title><author>Stamatiadis, S. ; Schepers, J. S. ; Evangelou, E. ; Tsadilas, C. ; Glampedakis, A. ; Glampedakis, M. ; Dercas, N. ; Spyropoulos, N. ; Dalezios, N. R. ; Eskridge, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural practices</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Data processing</topic><topic>Economics</topic><topic>Environmental impact</topic><topic>Farmers</topic><topic>Fertilization</topic><topic>Fertilizers</topic><topic>Grain</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>Performance assessment</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Profitability</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Seasons</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Soil analysis</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil water</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Statistics for Engineering</topic><topic>Triticum aestivum</topic><topic>Water balance</topic><topic>Wheat</topic><topic>Winter</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamatiadis, S.</creatorcontrib><creatorcontrib>Schepers, J. S.</creatorcontrib><creatorcontrib>Evangelou, E.</creatorcontrib><creatorcontrib>Tsadilas, C.</creatorcontrib><creatorcontrib>Glampedakis, A.</creatorcontrib><creatorcontrib>Glampedakis, M.</creatorcontrib><creatorcontrib>Dercas, N.</creatorcontrib><creatorcontrib>Spyropoulos, N.</creatorcontrib><creatorcontrib>Dalezios, N. R.</creatorcontrib><creatorcontrib>Eskridge, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamatiadis, S.</au><au>Schepers, J. S.</au><au>Evangelou, E.</au><au>Tsadilas, C.</au><au>Glampedakis, A.</au><au>Glampedakis, M.</au><au>Dercas, N.</au><au>Spyropoulos, N.</au><au>Dalezios, N. R.</au><au>Eskridge, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-rate nitrogen fertilization of winter wheat under high spatial resolution</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>19</volume><issue>3</issue><spage>570</spage><epage>587</epage><pages>570-587</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-017-9540-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7286-4105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-2256
ispartof Precision agriculture, 2018-06, Vol.19 (3), p.570-587
issn 1385-2256
1573-1618
language eng
recordid cdi_proquest_journals_2031667976
source ABI/INFORM Global; Springer Link
subjects Agricultural practices
Agricultural production
Agriculture
Atmospheric Sciences
Biomedical and Life Sciences
Chemistry and Earth Sciences
Computer Science
Crop yield
Crops
Data processing
Economics
Environmental impact
Farmers
Fertilization
Fertilizers
Grain
Leaching
Life Sciences
Nitrogen
Performance assessment
Physics
Precipitation
Profitability
Remote Sensing/Photogrammetry
Seasons
Sensors
Signal processing
Soil analysis
Soil Science & Conservation
Soil water
Spatial data
Spatial discrimination
Spatial resolution
Statistics for Engineering
Triticum aestivum
Water balance
Wheat
Winter
Winter wheat
title Variable-rate nitrogen fertilization of winter wheat under high spatial resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-rate%20nitrogen%20fertilization%20of%20winter%20wheat%20under%20high%20spatial%20resolution&rft.jtitle=Precision%20agriculture&rft.au=Stamatiadis,%20S.&rft.date=2018-06-01&rft.volume=19&rft.issue=3&rft.spage=570&rft.epage=587&rft.pages=570-587&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-017-9540-7&rft_dat=%3Cproquest_cross%3E2031667976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3a47d864775012aa4eb51504fba0c5f03ae08b4d8607dcf46c2c4fc5bfa5eb6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2031667976&rft_id=info:pmid/&rfr_iscdi=true