Loading…
Developing a cellular automata model of urban growth to inform spatial policy for flood mitigation: A case study in Kampala, Uganda
Urban growth may intensify local flooding problems. Understanding the spatially explicit flood consequences of possible future land cover patterns contributes to inform policy for mitigating these impacts. A cellular automata model has been coupled with the openLISEM integrated flood modeling tool t...
Saved in:
Published in: | Computers, environment and urban systems environment and urban systems, 2017-09, Vol.65, p.53-65 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Urban growth may intensify local flooding problems. Understanding the spatially explicit flood consequences of possible future land cover patterns contributes to inform policy for mitigating these impacts. A cellular automata model has been coupled with the openLISEM integrated flood modeling tool to simulate scenarios of urban growth and their consequent flood; the urban growth model makes use of a continuous response variable (the percentage of built-up area) and a spatially explicit simulation of supply for urban development. The models were calibrated for Upper Lubigi (Kampala, Uganda), a sub-catchment that experienced rapid urban growth during 2004–2010; this data scarce environment was chosen in part to test the model's performance with data inputs that introduced important uncertainty. The cellular automata model was validated in Nalukolongo (Kampala, Uganda). The calibrated modeling ensemble was then used to simulate urban growth scenarios of Upper Lubigi for 2020. Two scenarios, trend conditions and a policy of strict protection of existing wetlands, were simulated. The results of simulated scenarios for Upper Lubigi show how a policy of only protecting wetlands is ineffective; further, a substantial increase of flood impacts, attributable to urban growth, should be expected by 2020. The coupled models are operational with regard to the simulation of dynamic feedbacks between flood and suitability for urban growth. The tool proved useful in generating meaningful scenarios of land cover change and comparing their policy drivers as flood mitigation measures in a data scarce environment.
•We coupled cellular automata and flood models to simulate the impact of urban growth.•The tool generates scenarios to study drivers of growth as flood mitigation measures.•The urban growth model features a continuous response variable.•Calibration/validation was done in two similar catchments, to overcome lack of data. |
---|---|
ISSN: | 0198-9715 1873-7587 |
DOI: | 10.1016/j.compenvurbsys.2017.04.013 |