Loading…

Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution

Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to diff...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied phycology 2018-04, Vol.30 (2), p.931-941
Main Authors: Dahmen-Ben Moussa, Ines, Athmouni, Khaled, Chtourou, Haifa, Ayadi, Habib, Sayadi, Sami, Dhouib, Abdelhafidh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3
cites cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3
container_end_page 941
container_issue 2
container_start_page 931
container_title Journal of applied phycology
container_volume 30
creator Dahmen-Ben Moussa, Ines
Athmouni, Khaled
Chtourou, Haifa
Ayadi, Habib
Sayadi, Sami
Dhouib, Abdelhafidh
description Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L −1 ). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L −1 ) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L −1 ) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell −1 , phenolics 0.092 to 0.257 mg GAE g −1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g −1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell −1 , phenolics from 0.084 to 0.289 mg GAE g −1 (Fw), and carotenoid content from 0.41 to 0.97 mg g −1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.
doi_str_mv 10.1007/s10811-017-1315-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032682705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032682705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMcPYLPEiovPbuJkrMpTqgQDzJbjOI2LGwc7GdqJn05CkJiYTnff6_QhdAV0DpSK2wg0AyAUBAEOCTkcoRkkgpMERHqMZjRnQLJcwCk6i3FLKc0zyGbo67Xeax_MzpRWddY3uPWdaTqr3A1u63203vmN1eOqmhIX1uva7MYDDia2vokG-wovd23tg8KxL7rg2wH_od_1jXLWODcg7Rx3HjdWfxg3pDjXj3kX6KRSLprL33mO3h_u31ZPZP3y-LxaronmkHbELCBjOtEs04WiZVpwWFSKV3mpS61FxlVVaFAs5QuRpNwwKHIqqiRPOU9NYvg5up582-A_exM7ufV9GL6LklHO0owJmgwsmFg6-BiDqWQb7E6FvQQqx6LlVLQcipZj0fIwaNikiQO32Zjw5_y_6BuGMYP3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032682705</pqid></control><display><type>article</type><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><source>Springer Nature</source><creator>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</creator><creatorcontrib>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</creatorcontrib><description>Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L −1 ). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L −1 ) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L −1 ) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell −1 , phenolics 0.092 to 0.257 mg GAE g −1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g −1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell −1 , phenolics from 0.084 to 0.289 mg GAE g −1 (Fw), and carotenoid content from 0.41 to 0.97 mg g −1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-017-1315-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algae ; Aquatic environment ; Aquatic plants ; Bioaccumulation ; Biological effects ; Biomedical and Life Sciences ; Bioremediation ; Capacity ; Carbohydrates ; Carotenoids ; Cells ; Diatoms ; Dunaliella ; Ecology ; Exposure ; Freshwater &amp; Marine Ecology ; Heavy metals ; Life Sciences ; Lipids ; Metal concentrations ; Nickel ; Phenols ; Plant Physiology ; Plant Sciences ; Pollution ; Proteins ; Removal</subject><ispartof>Journal of applied phycology, 2018-04, Vol.30 (2), p.931-941</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Journal of Applied Phycology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</citedby><cites>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</cites><orcidid>0000-0001-7121-0150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dahmen-Ben Moussa, Ines</creatorcontrib><creatorcontrib>Athmouni, Khaled</creatorcontrib><creatorcontrib>Chtourou, Haifa</creatorcontrib><creatorcontrib>Ayadi, Habib</creatorcontrib><creatorcontrib>Sayadi, Sami</creatorcontrib><creatorcontrib>Dhouib, Abdelhafidh</creatorcontrib><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><description>Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L −1 ). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L −1 ) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L −1 ) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell −1 , phenolics 0.092 to 0.257 mg GAE g −1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g −1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell −1 , phenolics from 0.084 to 0.289 mg GAE g −1 (Fw), and carotenoid content from 0.41 to 0.97 mg g −1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</description><subject>Algae</subject><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Bioaccumulation</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Capacity</subject><subject>Carbohydrates</subject><subject>Carotenoids</subject><subject>Cells</subject><subject>Diatoms</subject><subject>Dunaliella</subject><subject>Ecology</subject><subject>Exposure</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Metal concentrations</subject><subject>Nickel</subject><subject>Phenols</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollution</subject><subject>Proteins</subject><subject>Removal</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMcPYLPEiovPbuJkrMpTqgQDzJbjOI2LGwc7GdqJn05CkJiYTnff6_QhdAV0DpSK2wg0AyAUBAEOCTkcoRkkgpMERHqMZjRnQLJcwCk6i3FLKc0zyGbo67Xeax_MzpRWddY3uPWdaTqr3A1u63203vmN1eOqmhIX1uva7MYDDia2vokG-wovd23tg8KxL7rg2wH_od_1jXLWODcg7Rx3HjdWfxg3pDjXj3kX6KRSLprL33mO3h_u31ZPZP3y-LxaronmkHbELCBjOtEs04WiZVpwWFSKV3mpS61FxlVVaFAs5QuRpNwwKHIqqiRPOU9NYvg5up582-A_exM7ufV9GL6LklHO0owJmgwsmFg6-BiDqWQb7E6FvQQqx6LlVLQcipZj0fIwaNikiQO32Zjw5_y_6BuGMYP3</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dahmen-Ben Moussa, Ines</creator><creator>Athmouni, Khaled</creator><creator>Chtourou, Haifa</creator><creator>Ayadi, Habib</creator><creator>Sayadi, Sami</creator><creator>Dhouib, Abdelhafidh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7121-0150</orcidid></search><sort><creationdate>20180401</creationdate><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><author>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algae</topic><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Bioaccumulation</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Capacity</topic><topic>Carbohydrates</topic><topic>Carotenoids</topic><topic>Cells</topic><topic>Diatoms</topic><topic>Dunaliella</topic><topic>Ecology</topic><topic>Exposure</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Metal concentrations</topic><topic>Nickel</topic><topic>Phenols</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollution</topic><topic>Proteins</topic><topic>Removal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahmen-Ben Moussa, Ines</creatorcontrib><creatorcontrib>Athmouni, Khaled</creatorcontrib><creatorcontrib>Chtourou, Haifa</creatorcontrib><creatorcontrib>Ayadi, Habib</creatorcontrib><creatorcontrib>Sayadi, Sami</creatorcontrib><creatorcontrib>Dhouib, Abdelhafidh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahmen-Ben Moussa, Ines</au><au>Athmouni, Khaled</au><au>Chtourou, Haifa</au><au>Ayadi, Habib</au><au>Sayadi, Sami</au><au>Dhouib, Abdelhafidh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>931</spage><epage>941</epage><pages>931-941</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L −1 ). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L −1 ) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L −1 ) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell −1 , phenolics 0.092 to 0.257 mg GAE g −1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g −1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell −1 , phenolics from 0.084 to 0.289 mg GAE g −1 (Fw), and carotenoid content from 0.41 to 0.97 mg g −1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10811-017-1315-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7121-0150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-8971
ispartof Journal of applied phycology, 2018-04, Vol.30 (2), p.931-941
issn 0921-8971
1573-5176
language eng
recordid cdi_proquest_journals_2032682705
source Springer Nature
subjects Algae
Aquatic environment
Aquatic plants
Bioaccumulation
Biological effects
Biomedical and Life Sciences
Bioremediation
Capacity
Carbohydrates
Carotenoids
Cells
Diatoms
Dunaliella
Ecology
Exposure
Freshwater & Marine Ecology
Heavy metals
Life Sciences
Lipids
Metal concentrations
Nickel
Phenols
Plant Physiology
Plant Sciences
Pollution
Proteins
Removal
title Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phycoremediation%20potential,%20physiological,%20and%20biochemical%20response%20of%20Amphora%20subtropica%20and%20Dunaliella%20sp.%20to%20nickel%20pollution&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Dahmen-Ben%20Moussa,%20Ines&rft.date=2018-04-01&rft.volume=30&rft.issue=2&rft.spage=931&rft.epage=941&rft.pages=931-941&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-017-1315-z&rft_dat=%3Cproquest_cross%3E2032682705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032682705&rft_id=info:pmid/&rfr_iscdi=true