Loading…
Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution
Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to diff...
Saved in:
Published in: | Journal of applied phycology 2018-04, Vol.30 (2), p.931-941 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3 |
container_end_page | 941 |
container_issue | 2 |
container_start_page | 931 |
container_title | Journal of applied phycology |
container_volume | 30 |
creator | Dahmen-Ben Moussa, Ines Athmouni, Khaled Chtourou, Haifa Ayadi, Habib Sayadi, Sami Dhouib, Abdelhafidh |
description | Metal pollution can produce many biological effects on aquatic environments. The marine diatom
Amphora subtropica
and the green alga
Dunaliella
sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of
A. subtropica
and
Dunaliella
sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L
−1
). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to
Dunaliella
sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L
−1
) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L
−1
) into
Amphora subtropica
cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell
−1
, phenolics 0.092 to 0.257 mg GAE g
−1
(Fw), and carotenoid content, from 0.08 to 0.59 mg g
−1
(Fw), in
A. subtropica.
In
Dunaliella
sp., total lipids increased from 26.1 to 65.3 pg cell
−1
, phenolics from 0.084 to 0.289 mg GAE g
−1
(Fw), and carotenoid content from 0.41 to 0.97 mg g
−1
(Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced. |
doi_str_mv | 10.1007/s10811-017-1315-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032682705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032682705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMcPYLPEiovPbuJkrMpTqgQDzJbjOI2LGwc7GdqJn05CkJiYTnff6_QhdAV0DpSK2wg0AyAUBAEOCTkcoRkkgpMERHqMZjRnQLJcwCk6i3FLKc0zyGbo67Xeax_MzpRWddY3uPWdaTqr3A1u63203vmN1eOqmhIX1uva7MYDDia2vokG-wovd23tg8KxL7rg2wH_od_1jXLWODcg7Rx3HjdWfxg3pDjXj3kX6KRSLprL33mO3h_u31ZPZP3y-LxaronmkHbELCBjOtEs04WiZVpwWFSKV3mpS61FxlVVaFAs5QuRpNwwKHIqqiRPOU9NYvg5up582-A_exM7ufV9GL6LklHO0owJmgwsmFg6-BiDqWQb7E6FvQQqx6LlVLQcipZj0fIwaNikiQO32Zjw5_y_6BuGMYP3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032682705</pqid></control><display><type>article</type><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><source>Springer Nature</source><creator>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</creator><creatorcontrib>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</creatorcontrib><description>Metal pollution can produce many biological effects on aquatic environments. The marine diatom
Amphora subtropica
and the green alga
Dunaliella
sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of
A. subtropica
and
Dunaliella
sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L
−1
). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to
Dunaliella
sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L
−1
) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L
−1
) into
Amphora subtropica
cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell
−1
, phenolics 0.092 to 0.257 mg GAE g
−1
(Fw), and carotenoid content, from 0.08 to 0.59 mg g
−1
(Fw), in
A. subtropica.
In
Dunaliella
sp., total lipids increased from 26.1 to 65.3 pg cell
−1
, phenolics from 0.084 to 0.289 mg GAE g
−1
(Fw), and carotenoid content from 0.41 to 0.97 mg g
−1
(Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</description><identifier>ISSN: 0921-8971</identifier><identifier>EISSN: 1573-5176</identifier><identifier>DOI: 10.1007/s10811-017-1315-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algae ; Aquatic environment ; Aquatic plants ; Bioaccumulation ; Biological effects ; Biomedical and Life Sciences ; Bioremediation ; Capacity ; Carbohydrates ; Carotenoids ; Cells ; Diatoms ; Dunaliella ; Ecology ; Exposure ; Freshwater & Marine Ecology ; Heavy metals ; Life Sciences ; Lipids ; Metal concentrations ; Nickel ; Phenols ; Plant Physiology ; Plant Sciences ; Pollution ; Proteins ; Removal</subject><ispartof>Journal of applied phycology, 2018-04, Vol.30 (2), p.931-941</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Journal of Applied Phycology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</citedby><cites>FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</cites><orcidid>0000-0001-7121-0150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dahmen-Ben Moussa, Ines</creatorcontrib><creatorcontrib>Athmouni, Khaled</creatorcontrib><creatorcontrib>Chtourou, Haifa</creatorcontrib><creatorcontrib>Ayadi, Habib</creatorcontrib><creatorcontrib>Sayadi, Sami</creatorcontrib><creatorcontrib>Dhouib, Abdelhafidh</creatorcontrib><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><title>Journal of applied phycology</title><addtitle>J Appl Phycol</addtitle><description>Metal pollution can produce many biological effects on aquatic environments. The marine diatom
Amphora subtropica
and the green alga
Dunaliella
sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of
A. subtropica
and
Dunaliella
sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L
−1
). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to
Dunaliella
sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L
−1
) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L
−1
) into
Amphora subtropica
cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell
−1
, phenolics 0.092 to 0.257 mg GAE g
−1
(Fw), and carotenoid content, from 0.08 to 0.59 mg g
−1
(Fw), in
A. subtropica.
In
Dunaliella
sp., total lipids increased from 26.1 to 65.3 pg cell
−1
, phenolics from 0.084 to 0.289 mg GAE g
−1
(Fw), and carotenoid content from 0.41 to 0.97 mg g
−1
(Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</description><subject>Algae</subject><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Bioaccumulation</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Capacity</subject><subject>Carbohydrates</subject><subject>Carotenoids</subject><subject>Cells</subject><subject>Diatoms</subject><subject>Dunaliella</subject><subject>Ecology</subject><subject>Exposure</subject><subject>Freshwater & Marine Ecology</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Metal concentrations</subject><subject>Nickel</subject><subject>Phenols</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollution</subject><subject>Proteins</subject><subject>Removal</subject><issn>0921-8971</issn><issn>1573-5176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMcPYLPEiovPbuJkrMpTqgQDzJbjOI2LGwc7GdqJn05CkJiYTnff6_QhdAV0DpSK2wg0AyAUBAEOCTkcoRkkgpMERHqMZjRnQLJcwCk6i3FLKc0zyGbo67Xeax_MzpRWddY3uPWdaTqr3A1u63203vmN1eOqmhIX1uva7MYDDia2vokG-wovd23tg8KxL7rg2wH_od_1jXLWODcg7Rx3HjdWfxg3pDjXj3kX6KRSLprL33mO3h_u31ZPZP3y-LxaronmkHbELCBjOtEs04WiZVpwWFSKV3mpS61FxlVVaFAs5QuRpNwwKHIqqiRPOU9NYvg5up582-A_exM7ufV9GL6LklHO0owJmgwsmFg6-BiDqWQb7E6FvQQqx6LlVLQcipZj0fIwaNikiQO32Zjw5_y_6BuGMYP3</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dahmen-Ben Moussa, Ines</creator><creator>Athmouni, Khaled</creator><creator>Chtourou, Haifa</creator><creator>Ayadi, Habib</creator><creator>Sayadi, Sami</creator><creator>Dhouib, Abdelhafidh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7121-0150</orcidid></search><sort><creationdate>20180401</creationdate><title>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</title><author>Dahmen-Ben Moussa, Ines ; Athmouni, Khaled ; Chtourou, Haifa ; Ayadi, Habib ; Sayadi, Sami ; Dhouib, Abdelhafidh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algae</topic><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Bioaccumulation</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Capacity</topic><topic>Carbohydrates</topic><topic>Carotenoids</topic><topic>Cells</topic><topic>Diatoms</topic><topic>Dunaliella</topic><topic>Ecology</topic><topic>Exposure</topic><topic>Freshwater & Marine Ecology</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Metal concentrations</topic><topic>Nickel</topic><topic>Phenols</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollution</topic><topic>Proteins</topic><topic>Removal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahmen-Ben Moussa, Ines</creatorcontrib><creatorcontrib>Athmouni, Khaled</creatorcontrib><creatorcontrib>Chtourou, Haifa</creatorcontrib><creatorcontrib>Ayadi, Habib</creatorcontrib><creatorcontrib>Sayadi, Sami</creatorcontrib><creatorcontrib>Dhouib, Abdelhafidh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of applied phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahmen-Ben Moussa, Ines</au><au>Athmouni, Khaled</au><au>Chtourou, Haifa</au><au>Ayadi, Habib</au><au>Sayadi, Sami</au><au>Dhouib, Abdelhafidh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution</atitle><jtitle>Journal of applied phycology</jtitle><stitle>J Appl Phycol</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>931</spage><epage>941</epage><pages>931-941</pages><issn>0921-8971</issn><eissn>1573-5176</eissn><abstract>Metal pollution can produce many biological effects on aquatic environments. The marine diatom
Amphora subtropica
and the green alga
Dunaliella
sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of
A. subtropica
and
Dunaliella
sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L
−1
). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to
Dunaliella
sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L
−1
) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L
−1
) into
Amphora subtropica
cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell
−1
, phenolics 0.092 to 0.257 mg GAE g
−1
(Fw), and carotenoid content, from 0.08 to 0.59 mg g
−1
(Fw), in
A. subtropica.
In
Dunaliella
sp., total lipids increased from 26.1 to 65.3 pg cell
−1
, phenolics from 0.084 to 0.289 mg GAE g
−1
(Fw), and carotenoid content from 0.41 to 0.97 mg g
−1
(Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10811-017-1315-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7121-0150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-8971 |
ispartof | Journal of applied phycology, 2018-04, Vol.30 (2), p.931-941 |
issn | 0921-8971 1573-5176 |
language | eng |
recordid | cdi_proquest_journals_2032682705 |
source | Springer Nature |
subjects | Algae Aquatic environment Aquatic plants Bioaccumulation Biological effects Biomedical and Life Sciences Bioremediation Capacity Carbohydrates Carotenoids Cells Diatoms Dunaliella Ecology Exposure Freshwater & Marine Ecology Heavy metals Life Sciences Lipids Metal concentrations Nickel Phenols Plant Physiology Plant Sciences Pollution Proteins Removal |
title | Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phycoremediation%20potential,%20physiological,%20and%20biochemical%20response%20of%20Amphora%20subtropica%20and%20Dunaliella%20sp.%20to%20nickel%20pollution&rft.jtitle=Journal%20of%20applied%20phycology&rft.au=Dahmen-Ben%20Moussa,%20Ines&rft.date=2018-04-01&rft.volume=30&rft.issue=2&rft.spage=931&rft.epage=941&rft.pages=931-941&rft.issn=0921-8971&rft.eissn=1573-5176&rft_id=info:doi/10.1007/s10811-017-1315-z&rft_dat=%3Cproquest_cross%3E2032682705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e4182c5c28cba0d6b314fa3f9dcdcc783afbc1a26347563e21b907f596336e5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032682705&rft_id=info:pmid/&rfr_iscdi=true |