Loading…

EigenRec: generalizing PureSVD for effective and efficient top-N recommendations

We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operato...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems 2019-01, Vol.58 (1), p.59-81
Main Authors: Nikolakopoulos, Athanasios N., Kalantzis, Vassilis, Gallopoulos, Efstratios, Garofalakis, John D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3
cites cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3
container_end_page 81
container_issue 1
container_start_page 59
container_title Knowledge and information systems
container_volume 58
creator Nikolakopoulos, Athanasios N.
Kalantzis, Vassilis
Gallopoulos, Efstratios
Garofalakis, John D.
description We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.
doi_str_mv 10.1007/s10115-018-1197-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2034094078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034094078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9k5lkxp3U-oCixdc2hMxNSWkzNZkK-uudMgVXrs65cM658DF2jnCJAOoqISCWHLDiiLXi6oCNIMeaC0R5uPcolDpmJyktAVBJxBGbT_2CwgvZ66xXimblf3xYZPNtpNeP28y1MSPnyHb-izITmt3lrafQZV274U9ZJNuu1xQa0_k2pFN25Mwq0dlex-z9bvo2eeCz5_vHyc2MW4Gy45WUTS6BAC1YWbpKNHlJjSpcZapaWulKVYu6QCmULBpVOyGwQVNWZSFzRWLMLobdTWw_t5Q6vWy3MfQvdQ6igLoAVfUpHFI2tilFcnoT_drEb42gd-D0AE734PQOnFZ9Jx86qc-GBcW_5f9Lv6F-bsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034094078</pqid></control><display><type>article</type><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</creator><creatorcontrib>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</creatorcontrib><description>We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-018-1197-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Cold starts ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Performance measurement ; Popularity ; Recommender systems ; Regular Paper ; Software</subject><ispartof>Knowledge and information systems, 2019-01, Vol.58 (1), p.59-81</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Knowledge and Information Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</citedby><cites>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</cites><orcidid>0000-0001-9853-0621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2034094078/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2034094078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Nikolakopoulos, Athanasios N.</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Gallopoulos, Efstratios</creatorcontrib><creatorcontrib>Garofalakis, John D.</creatorcontrib><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.</description><subject>Algorithms</subject><subject>Cold starts</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Performance measurement</subject><subject>Popularity</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Software</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9k5lkxp3U-oCixdc2hMxNSWkzNZkK-uudMgVXrs65cM658DF2jnCJAOoqISCWHLDiiLXi6oCNIMeaC0R5uPcolDpmJyktAVBJxBGbT_2CwgvZ66xXimblf3xYZPNtpNeP28y1MSPnyHb-izITmt3lrafQZV274U9ZJNuu1xQa0_k2pFN25Mwq0dlex-z9bvo2eeCz5_vHyc2MW4Gy45WUTS6BAC1YWbpKNHlJjSpcZapaWulKVYu6QCmULBpVOyGwQVNWZSFzRWLMLobdTWw_t5Q6vWy3MfQvdQ6igLoAVfUpHFI2tilFcnoT_drEb42gd-D0AE734PQOnFZ9Jx86qc-GBcW_5f9Lv6F-bsg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Nikolakopoulos, Athanasios N.</creator><creator>Kalantzis, Vassilis</creator><creator>Gallopoulos, Efstratios</creator><creator>Garofalakis, John D.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9853-0621</orcidid></search><sort><creationdate>20190101</creationdate><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><author>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cold starts</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Performance measurement</topic><topic>Popularity</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolakopoulos, Athanasios N.</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Gallopoulos, Efstratios</creatorcontrib><creatorcontrib>Garofalakis, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolakopoulos, Athanasios N.</au><au>Kalantzis, Vassilis</au><au>Gallopoulos, Efstratios</au><au>Garofalakis, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>59</spage><epage>81</epage><pages>59-81</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-018-1197-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9853-0621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2019-01, Vol.58 (1), p.59-81
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_2034094078
source ABI/INFORM Global; Springer Nature
subjects Algorithms
Cold starts
Computer Science
Data Mining and Knowledge Discovery
Database Management
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Performance measurement
Popularity
Recommender systems
Regular Paper
Software
title EigenRec: generalizing PureSVD for effective and efficient top-N recommendations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EigenRec:%20generalizing%20PureSVD%20for%20effective%20and%20efficient%20top-N%20recommendations&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Nikolakopoulos,%20Athanasios%20N.&rft.date=2019-01-01&rft.volume=58&rft.issue=1&rft.spage=59&rft.epage=81&rft.pages=59-81&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-018-1197-7&rft_dat=%3Cproquest_cross%3E2034094078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034094078&rft_id=info:pmid/&rfr_iscdi=true