Loading…
EigenRec: generalizing PureSVD for effective and efficient top-N recommendations
We introduce EigenRec , a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operato...
Saved in:
Published in: | Knowledge and information systems 2019-01, Vol.58 (1), p.59-81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 59 |
container_title | Knowledge and information systems |
container_volume | 58 |
creator | Nikolakopoulos, Athanasios N. Kalantzis, Vassilis Gallopoulos, Efstratios Garofalakis, John D. |
description | We introduce
EigenRec
, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known
PureSVD
algorithm as a special case.
EigenRec
builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the
influence of the prior item popularity
on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that
EigenRec
outperforms several state-of-the-art algorithms, in terms of
Standard
and
Long-Tail
recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the
Cold-Start
problems. At the same time,
EigenRec
has an attractive computational profile and it can apply readily in large-scale recommendation settings. |
doi_str_mv | 10.1007/s10115-018-1197-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2034094078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034094078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9k5lkxp3U-oCixdc2hMxNSWkzNZkK-uudMgVXrs65cM658DF2jnCJAOoqISCWHLDiiLXi6oCNIMeaC0R5uPcolDpmJyktAVBJxBGbT_2CwgvZ66xXimblf3xYZPNtpNeP28y1MSPnyHb-izITmt3lrafQZV274U9ZJNuu1xQa0_k2pFN25Mwq0dlex-z9bvo2eeCz5_vHyc2MW4Gy45WUTS6BAC1YWbpKNHlJjSpcZapaWulKVYu6QCmULBpVOyGwQVNWZSFzRWLMLobdTWw_t5Q6vWy3MfQvdQ6igLoAVfUpHFI2tilFcnoT_drEb42gd-D0AE734PQOnFZ9Jx86qc-GBcW_5f9Lv6F-bsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034094078</pqid></control><display><type>article</type><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</creator><creatorcontrib>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</creatorcontrib><description>We introduce
EigenRec
, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known
PureSVD
algorithm as a special case.
EigenRec
builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the
influence of the prior item popularity
on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that
EigenRec
outperforms several state-of-the-art algorithms, in terms of
Standard
and
Long-Tail
recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the
Cold-Start
problems. At the same time,
EigenRec
has an attractive computational profile and it can apply readily in large-scale recommendation settings.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-018-1197-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Cold starts ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Performance measurement ; Popularity ; Recommender systems ; Regular Paper ; Software</subject><ispartof>Knowledge and information systems, 2019-01, Vol.58 (1), p.59-81</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Knowledge and Information Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</citedby><cites>FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</cites><orcidid>0000-0001-9853-0621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2034094078/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2034094078?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>Nikolakopoulos, Athanasios N.</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Gallopoulos, Efstratios</creatorcontrib><creatorcontrib>Garofalakis, John D.</creatorcontrib><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>We introduce
EigenRec
, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known
PureSVD
algorithm as a special case.
EigenRec
builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the
influence of the prior item popularity
on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that
EigenRec
outperforms several state-of-the-art algorithms, in terms of
Standard
and
Long-Tail
recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the
Cold-Start
problems. At the same time,
EigenRec
has an attractive computational profile and it can apply readily in large-scale recommendation settings.</description><subject>Algorithms</subject><subject>Cold starts</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Performance measurement</subject><subject>Popularity</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Software</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-i9k5lkxp3U-oCixdc2hMxNSWkzNZkK-uudMgVXrs65cM658DF2jnCJAOoqISCWHLDiiLXi6oCNIMeaC0R5uPcolDpmJyktAVBJxBGbT_2CwgvZ66xXimblf3xYZPNtpNeP28y1MSPnyHb-izITmt3lrafQZV274U9ZJNuu1xQa0_k2pFN25Mwq0dlex-z9bvo2eeCz5_vHyc2MW4Gy45WUTS6BAC1YWbpKNHlJjSpcZapaWulKVYu6QCmULBpVOyGwQVNWZSFzRWLMLobdTWw_t5Q6vWy3MfQvdQ6igLoAVfUpHFI2tilFcnoT_drEb42gd-D0AE734PQOnFZ9Jx86qc-GBcW_5f9Lv6F-bsg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Nikolakopoulos, Athanasios N.</creator><creator>Kalantzis, Vassilis</creator><creator>Gallopoulos, Efstratios</creator><creator>Garofalakis, John D.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9853-0621</orcidid></search><sort><creationdate>20190101</creationdate><title>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</title><author>Nikolakopoulos, Athanasios N. ; Kalantzis, Vassilis ; Gallopoulos, Efstratios ; Garofalakis, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cold starts</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Performance measurement</topic><topic>Popularity</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolakopoulos, Athanasios N.</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Gallopoulos, Efstratios</creatorcontrib><creatorcontrib>Garofalakis, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolakopoulos, Athanasios N.</au><au>Kalantzis, Vassilis</au><au>Gallopoulos, Efstratios</au><au>Garofalakis, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EigenRec: generalizing PureSVD for effective and efficient top-N recommendations</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>58</volume><issue>1</issue><spage>59</spage><epage>81</epage><pages>59-81</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>We introduce
EigenRec
, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known
PureSVD
algorithm as a special case.
EigenRec
builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the
influence of the prior item popularity
on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that
EigenRec
outperforms several state-of-the-art algorithms, in terms of
Standard
and
Long-Tail
recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the
Cold-Start
problems. At the same time,
EigenRec
has an attractive computational profile and it can apply readily in large-scale recommendation settings.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-018-1197-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9853-0621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2019-01, Vol.58 (1), p.59-81 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2034094078 |
source | ABI/INFORM Global; Springer Nature |
subjects | Algorithms Cold starts Computer Science Data Mining and Knowledge Discovery Database Management Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Performance measurement Popularity Recommender systems Regular Paper Software |
title | EigenRec: generalizing PureSVD for effective and efficient top-N recommendations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EigenRec:%20generalizing%20PureSVD%20for%20effective%20and%20efficient%20top-N%20recommendations&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Nikolakopoulos,%20Athanasios%20N.&rft.date=2019-01-01&rft.volume=58&rft.issue=1&rft.spage=59&rft.epage=81&rft.pages=59-81&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-018-1197-7&rft_dat=%3Cproquest_cross%3E2034094078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-866d260e01c0c65f83d25ed74f8a896c6f579394163764d79f331d1a5854627e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034094078&rft_id=info:pmid/&rfr_iscdi=true |