Loading…

Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel

For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical physics 2018-06, Vol.57 (6), p.1888-1893
Main Authors: Yu, Zhisong, Ren, Guihua, Yu, Ziyang, Wei, Chenhuinan, Fan, Hongyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3
cites cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3
container_end_page 1893
container_issue 6
container_start_page 1888
container_title International journal of theoretical physics
container_volume 57
creator Yu, Zhisong
Ren, Guihua
Yu, Ziyang
Wei, Chenhuinan
Fan, Hongyi
description For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ . We derive that it evolves into 1 T + 1 : exp 2 T + 1 [ − ( α ∗ e − κ t − a ‡ ) ( α e − κ t − a ) ] : where T ≡ 1 − e − 2 κ t . This in turn helps to directly obtain the final state ρ ( t ) out of the dessipative channel from the initial classical function corresponding to initial ρ (0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.
doi_str_mv 10.1007/s10773-018-3714-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035023168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035023168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOnoylySzLLVeoFCEisuQmTlpU9rMmMwUfHunjNCVqwP_-S_wEXLP4ZEDyKfIQcqUAVcslTxj4oJMeC4TVuQyvyQTgASYlJm6Jjcx7gCggExNSLl2B6SLY7PvO9d42ljabZF-uY3HQFctBtM1gZpIDf3oTXSsRh9d93P-OU9nh3bvur5G-owxutZ07oh0vjXe4_6WXFmzj3j3d6fk82Wxnr-x5er1fT5bsirlomMZANZ1XookrXmRc1vZTJVcqEqirLiwCkWGVZFgKUpVcGnAVtxmeT1IiTDplDyMvW1ovnuMnd41ffDDpE4gzSEZZtTg4qOrCk2MAa1ugzuY8KM56BNKPaLUA0p9QqnFkEnGTBy8foPh3Px_6BdNi3cG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035023168</pqid></control><display><type>article</type><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><source>Springer Nature</source><creator>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</creator><creatorcontrib>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</creatorcontrib><description>For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ . We derive that it evolves into 1 T + 1 : exp 2 T + 1 [ − ( α ∗ e − κ t − a ‡ ) ( α e − κ t − a ) ] : where T ≡ 1 − e − 2 κ t . This in turn helps to directly obtain the final state ρ ( t ) out of the dessipative channel from the initial classical function corresponding to initial ρ (0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-018-3714-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Damping ; Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2018-06, Vol.57 (6), p.1888-1893</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</citedby><cites>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Zhisong</creatorcontrib><creatorcontrib>Ren, Guihua</creatorcontrib><creatorcontrib>Yu, Ziyang</creatorcontrib><creatorcontrib>Wei, Chenhuinan</creatorcontrib><creatorcontrib>Fan, Hongyi</creatorcontrib><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ . We derive that it evolves into 1 T + 1 : exp 2 T + 1 [ − ( α ∗ e − κ t − a ‡ ) ( α e − κ t − a ) ] : where T ≡ 1 − e − 2 κ t . This in turn helps to directly obtain the final state ρ ( t ) out of the dessipative channel from the initial classical function corresponding to initial ρ (0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</description><subject>Damping</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOnoylySzLLVeoFCEisuQmTlpU9rMmMwUfHunjNCVqwP_-S_wEXLP4ZEDyKfIQcqUAVcslTxj4oJMeC4TVuQyvyQTgASYlJm6Jjcx7gCggExNSLl2B6SLY7PvO9d42ljabZF-uY3HQFctBtM1gZpIDf3oTXSsRh9d93P-OU9nh3bvur5G-owxutZ07oh0vjXe4_6WXFmzj3j3d6fk82Wxnr-x5er1fT5bsirlomMZANZ1XookrXmRc1vZTJVcqEqirLiwCkWGVZFgKUpVcGnAVtxmeT1IiTDplDyMvW1ovnuMnd41ffDDpE4gzSEZZtTg4qOrCk2MAa1ugzuY8KM56BNKPaLUA0p9QqnFkEnGTBy8foPh3Px_6BdNi3cG</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Yu, Zhisong</creator><creator>Ren, Guihua</creator><creator>Yu, Ziyang</creator><creator>Wei, Chenhuinan</creator><creator>Fan, Hongyi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><author>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Damping</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhisong</creatorcontrib><creatorcontrib>Ren, Guihua</creatorcontrib><creatorcontrib>Yu, Ziyang</creatorcontrib><creatorcontrib>Wei, Chenhuinan</creatorcontrib><creatorcontrib>Fan, Hongyi</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhisong</au><au>Ren, Guihua</au><au>Yu, Ziyang</au><au>Wei, Chenhuinan</au><au>Fan, Hongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>57</volume><issue>6</issue><spage>1888</spage><epage>1893</epage><pages>1888-1893</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ . We derive that it evolves into 1 T + 1 : exp 2 T + 1 [ − ( α ∗ e − κ t − a ‡ ) ( α e − κ t − a ) ] : where T ≡ 1 − e − 2 κ t . This in turn helps to directly obtain the final state ρ ( t ) out of the dessipative channel from the initial classical function corresponding to initial ρ (0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-018-3714-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2018-06, Vol.57 (6), p.1888-1893
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2035023168
source Springer Nature
subjects Damping
Elementary Particles
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Field Theory
Quantum mechanics
Quantum Physics
Theoretical
title Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Evolution%20of%20the%20Wigner%20Operator%20as%20a%20Quasi-density%20Operator%20in%20Amplitude%20Dessipative%20Channel&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Yu,%20Zhisong&rft.date=2018-06-01&rft.volume=57&rft.issue=6&rft.spage=1888&rft.epage=1893&rft.pages=1888-1893&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-018-3714-6&rft_dat=%3Cproquest_cross%3E2035023168%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035023168&rft_id=info:pmid/&rfr_iscdi=true