Loading…
Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel
For developing quantum mechanics theory in phase space, we explore how the Wigner operator Δ ( α , α ∗ ) ≡ 1 π : e − 2 ( α ∗ − α ‡ ) ( α − α ) :, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant...
Saved in:
Published in: | International journal of theoretical physics 2018-06, Vol.57 (6), p.1888-1893 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3 |
container_end_page | 1893 |
container_issue | 6 |
container_start_page | 1888 |
container_title | International journal of theoretical physics |
container_volume | 57 |
creator | Yu, Zhisong Ren, Guihua Yu, Ziyang Wei, Chenhuinan Fan, Hongyi |
description | For developing quantum mechanics theory in phase space, we explore how the Wigner operator
Δ
(
α
,
α
∗
)
≡
1
π
:
e
−
2
(
α
∗
−
α
‡
)
(
α
−
α
)
:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant
κ
. We derive that it evolves into
1
T
+
1
:
exp
2
T
+
1
[
−
(
α
∗
e
−
κ
t
−
a
‡
)
(
α
e
−
κ
t
−
a
)
]
:
where
T
≡ 1 −
e
− 2
κ
t
. This in turn helps to directly obtain the final state
ρ
(
t
) out of the dessipative channel from the initial classical function corresponding to initial
ρ
(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed. |
doi_str_mv | 10.1007/s10773-018-3714-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035023168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035023168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOnoylySzLLVeoFCEisuQmTlpU9rMmMwUfHunjNCVqwP_-S_wEXLP4ZEDyKfIQcqUAVcslTxj4oJMeC4TVuQyvyQTgASYlJm6Jjcx7gCggExNSLl2B6SLY7PvO9d42ljabZF-uY3HQFctBtM1gZpIDf3oTXSsRh9d93P-OU9nh3bvur5G-owxutZ07oh0vjXe4_6WXFmzj3j3d6fk82Wxnr-x5er1fT5bsirlomMZANZ1XookrXmRc1vZTJVcqEqirLiwCkWGVZFgKUpVcGnAVtxmeT1IiTDplDyMvW1ovnuMnd41ffDDpE4gzSEZZtTg4qOrCk2MAa1ugzuY8KM56BNKPaLUA0p9QqnFkEnGTBy8foPh3Px_6BdNi3cG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035023168</pqid></control><display><type>article</type><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><source>Springer Nature</source><creator>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</creator><creatorcontrib>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</creatorcontrib><description>For developing quantum mechanics theory in phase space, we explore how the Wigner operator
Δ
(
α
,
α
∗
)
≡
1
π
:
e
−
2
(
α
∗
−
α
‡
)
(
α
−
α
)
:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant
κ
. We derive that it evolves into
1
T
+
1
:
exp
2
T
+
1
[
−
(
α
∗
e
−
κ
t
−
a
‡
)
(
α
e
−
κ
t
−
a
)
]
:
where
T
≡ 1 −
e
− 2
κ
t
. This in turn helps to directly obtain the final state
ρ
(
t
) out of the dessipative channel from the initial classical function corresponding to initial
ρ
(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-018-3714-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Damping ; Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2018-06, Vol.57 (6), p.1888-1893</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</citedby><cites>FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Zhisong</creatorcontrib><creatorcontrib>Ren, Guihua</creatorcontrib><creatorcontrib>Yu, Ziyang</creatorcontrib><creatorcontrib>Wei, Chenhuinan</creatorcontrib><creatorcontrib>Fan, Hongyi</creatorcontrib><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>For developing quantum mechanics theory in phase space, we explore how the Wigner operator
Δ
(
α
,
α
∗
)
≡
1
π
:
e
−
2
(
α
∗
−
α
‡
)
(
α
−
α
)
:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant
κ
. We derive that it evolves into
1
T
+
1
:
exp
2
T
+
1
[
−
(
α
∗
e
−
κ
t
−
a
‡
)
(
α
e
−
κ
t
−
a
)
]
:
where
T
≡ 1 −
e
− 2
κ
t
. This in turn helps to directly obtain the final state
ρ
(
t
) out of the dessipative channel from the initial classical function corresponding to initial
ρ
(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</description><subject>Damping</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOnoylySzLLVeoFCEisuQmTlpU9rMmMwUfHunjNCVqwP_-S_wEXLP4ZEDyKfIQcqUAVcslTxj4oJMeC4TVuQyvyQTgASYlJm6Jjcx7gCggExNSLl2B6SLY7PvO9d42ljabZF-uY3HQFctBtM1gZpIDf3oTXSsRh9d93P-OU9nh3bvur5G-owxutZ07oh0vjXe4_6WXFmzj3j3d6fk82Wxnr-x5er1fT5bsirlomMZANZ1XookrXmRc1vZTJVcqEqirLiwCkWGVZFgKUpVcGnAVtxmeT1IiTDplDyMvW1ovnuMnd41ffDDpE4gzSEZZtTg4qOrCk2MAa1ugzuY8KM56BNKPaLUA0p9QqnFkEnGTBy8foPh3Px_6BdNi3cG</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Yu, Zhisong</creator><creator>Ren, Guihua</creator><creator>Yu, Ziyang</creator><creator>Wei, Chenhuinan</creator><creator>Fan, Hongyi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</title><author>Yu, Zhisong ; Ren, Guihua ; Yu, Ziyang ; Wei, Chenhuinan ; Fan, Hongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Damping</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhisong</creatorcontrib><creatorcontrib>Ren, Guihua</creatorcontrib><creatorcontrib>Yu, Ziyang</creatorcontrib><creatorcontrib>Wei, Chenhuinan</creatorcontrib><creatorcontrib>Fan, Hongyi</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhisong</au><au>Ren, Guihua</au><au>Yu, Ziyang</au><au>Wei, Chenhuinan</au><au>Fan, Hongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>57</volume><issue>6</issue><spage>1888</spage><epage>1893</epage><pages>1888-1893</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>For developing quantum mechanics theory in phase space, we explore how the Wigner operator
Δ
(
α
,
α
∗
)
≡
1
π
:
e
−
2
(
α
∗
−
α
‡
)
(
α
−
α
)
:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant
κ
. We derive that it evolves into
1
T
+
1
:
exp
2
T
+
1
[
−
(
α
∗
e
−
κ
t
−
a
‡
)
(
α
e
−
κ
t
−
a
)
]
:
where
T
≡ 1 −
e
− 2
κ
t
. This in turn helps to directly obtain the final state
ρ
(
t
) out of the dessipative channel from the initial classical function corresponding to initial
ρ
(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-018-3714-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2018-06, Vol.57 (6), p.1888-1893 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2035023168 |
source | Springer Nature |
subjects | Damping Elementary Particles Mathematical and Computational Physics Physics Physics and Astronomy Quantum Field Theory Quantum mechanics Quantum Physics Theoretical |
title | Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Evolution%20of%20the%20Wigner%20Operator%20as%20a%20Quasi-density%20Operator%20in%20Amplitude%20Dessipative%20Channel&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Yu,%20Zhisong&rft.date=2018-06-01&rft.volume=57&rft.issue=6&rft.spage=1888&rft.epage=1893&rft.pages=1888-1893&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-018-3714-6&rft_dat=%3Cproquest_cross%3E2035023168%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-400edd5b623d1951fcf48b168c7e7c16f8e64ec92eb6b8917a0fc1f45d92e26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035023168&rft_id=info:pmid/&rfr_iscdi=true |