Loading…
Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials
We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XR...
Saved in:
Published in: | Electrochimica acta 2018-02, Vol.263, p.409-416 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3 |
container_end_page | 416 |
container_issue | |
container_start_page | 409 |
container_title | Electrochimica acta |
container_volume | 263 |
creator | Gong, Hanqin Zheng, Feng Xu, Jiahe Sun, Chencen Gao, Liangchao Hu, Pengfei Li, Yang Gong, Yu Zhen, Qiang Bashir, Sajid |
description | We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material.
[Display omitted]
•MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect. |
doi_str_mv | 10.1016/j.electacta.2018.01.072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035207072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618301038</els_id><sourcerecordid>2035207072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</originalsourceid><addsrcrecordid>eNqFkdGK1TAQhosoeFx9BgPe6EVr0rRpj3eHRd2FlRVUvAxzksma2iY1SVf7vj6I6Z5F8EoIDAzf_Pln_qJ4zmjFKBOvhwpHVAnyq2rK-oqyinb1g2LH-o6XvG_3D4sdpYyXjejF4-JJjAOltBMd3RW_PwacIUCy3hFwmsRlxqBgBmWTvUUyB58baSXekMmP61GjWyaibVxGYzWSlx_8p_oVceC8GeE7EggB1liStLibmNCRFKz_dYd-veYnMnh9zxHlp9lHm5B8w4TBD4tTm5s35EDi6jDc2JisImhMXnOz4R2W2k7oYsZgvLOdfvp_etsnE2Q9C2N8WjwyueCz-3pWfHn39vP5RXl1_f7y_HBVKt7TVEKLDQI0Zn9UwvRMsN7UQtTQH03TcaDC7FWNHAxra-Cs68URW90q02hQDfCz4sVJNx_tx4IxycEvIduJsqa8rWmXg8lUd6JU8DEGNHIOdoKwSkblFqkc5N9I5RappEyeJg-nScxL3FoMMiqLTqG2IfNSe_tfjT-D0rZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035207072</pqid></control><display><type>article</type><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><source>ScienceDirect Freedom Collection</source><creator>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</creator><creatorcontrib>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</creatorcontrib><description>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material.
[Display omitted]
•MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.01.072</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Array ; Arrays ; Capacitance ; Charge transfer ; Composite materials ; Copper ; Electric properties ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Heterojunction ; Heterojunctions ; Microscopes ; Molybdenum ; Molybdenum disulfide ; Nanomaterials ; Nanorods ; Scanning electron microscopy ; Substrates ; Supercapacitor ; Synergistic effect ; Tungsten oxides ; Tungsten trioxide ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Electrochimica acta, 2018-02, Vol.263, p.409-416</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</citedby><cites>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Hanqin</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Sun, Chencen</creatorcontrib><creatorcontrib>Gao, Liangchao</creatorcontrib><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Zhen, Qiang</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><title>Electrochimica acta</title><description>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material.
[Display omitted]
•MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</description><subject>Array</subject><subject>Arrays</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Electric properties</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Heterojunction</subject><subject>Heterojunctions</subject><subject>Microscopes</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanomaterials</subject><subject>Nanorods</subject><subject>Scanning electron microscopy</subject><subject>Substrates</subject><subject>Supercapacitor</subject><subject>Synergistic effect</subject><subject>Tungsten oxides</subject><subject>Tungsten trioxide</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkdGK1TAQhosoeFx9BgPe6EVr0rRpj3eHRd2FlRVUvAxzksma2iY1SVf7vj6I6Z5F8EoIDAzf_Pln_qJ4zmjFKBOvhwpHVAnyq2rK-oqyinb1g2LH-o6XvG_3D4sdpYyXjejF4-JJjAOltBMd3RW_PwacIUCy3hFwmsRlxqBgBmWTvUUyB58baSXekMmP61GjWyaibVxGYzWSlx_8p_oVceC8GeE7EggB1liStLibmNCRFKz_dYd-veYnMnh9zxHlp9lHm5B8w4TBD4tTm5s35EDi6jDc2JisImhMXnOz4R2W2k7oYsZgvLOdfvp_etsnE2Q9C2N8WjwyueCz-3pWfHn39vP5RXl1_f7y_HBVKt7TVEKLDQI0Zn9UwvRMsN7UQtTQH03TcaDC7FWNHAxra-Cs68URW90q02hQDfCz4sVJNx_tx4IxycEvIduJsqa8rWmXg8lUd6JU8DEGNHIOdoKwSkblFqkc5N9I5RappEyeJg-nScxL3FoMMiqLTqG2IfNSe_tfjT-D0rZ1</recordid><startdate>20180210</startdate><enddate>20180210</enddate><creator>Gong, Hanqin</creator><creator>Zheng, Feng</creator><creator>Xu, Jiahe</creator><creator>Sun, Chencen</creator><creator>Gao, Liangchao</creator><creator>Hu, Pengfei</creator><creator>Li, Yang</creator><creator>Gong, Yu</creator><creator>Zhen, Qiang</creator><creator>Bashir, Sajid</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180210</creationdate><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><author>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Array</topic><topic>Arrays</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Electric properties</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Heterojunction</topic><topic>Heterojunctions</topic><topic>Microscopes</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanomaterials</topic><topic>Nanorods</topic><topic>Scanning electron microscopy</topic><topic>Substrates</topic><topic>Supercapacitor</topic><topic>Synergistic effect</topic><topic>Tungsten oxides</topic><topic>Tungsten trioxide</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Hanqin</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Sun, Chencen</creatorcontrib><creatorcontrib>Gao, Liangchao</creatorcontrib><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Zhen, Qiang</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Hanqin</au><au>Zheng, Feng</au><au>Xu, Jiahe</au><au>Sun, Chencen</au><au>Gao, Liangchao</au><au>Hu, Pengfei</au><au>Li, Yang</au><au>Gong, Yu</au><au>Zhen, Qiang</au><au>Bashir, Sajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</atitle><jtitle>Electrochimica acta</jtitle><date>2018-02-10</date><risdate>2018</risdate><volume>263</volume><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material.
[Display omitted]
•MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.01.072</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2018-02, Vol.263, p.409-416 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2035207072 |
source | ScienceDirect Freedom Collection |
subjects | Array Arrays Capacitance Charge transfer Composite materials Copper Electric properties Electrochemical impedance spectroscopy Electrode materials Electrodes Heterojunction Heterojunctions Microscopes Molybdenum Molybdenum disulfide Nanomaterials Nanorods Scanning electron microscopy Substrates Supercapacitor Synergistic effect Tungsten oxides Tungsten trioxide X ray photoelectron spectroscopy X-ray diffraction |
title | Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20supercapacitive%20property%20of%20molybdenum%20disulfide%20(MoS2)%20nanoflake%20arrays-%20tungsten%20trioxide%20(WO3)%20nanorod%20arrays%20composite%20heterojunction:%20A%20synergistic%20effect%20of%20one-dimensional%20and%20two-dimensional%20nanomaterials&rft.jtitle=Electrochimica%20acta&rft.au=Gong,%20Hanqin&rft.date=2018-02-10&rft.volume=263&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.01.072&rft_dat=%3Cproquest_cross%3E2035207072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035207072&rft_id=info:pmid/&rfr_iscdi=true |