Loading…

Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials

We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XR...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2018-02, Vol.263, p.409-416
Main Authors: Gong, Hanqin, Zheng, Feng, Xu, Jiahe, Sun, Chencen, Gao, Liangchao, Hu, Pengfei, Li, Yang, Gong, Yu, Zhen, Qiang, Bashir, Sajid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3
cites cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3
container_end_page 416
container_issue
container_start_page 409
container_title Electrochimica acta
container_volume 263
creator Gong, Hanqin
Zheng, Feng
Xu, Jiahe
Sun, Chencen
Gao, Liangchao
Hu, Pengfei
Li, Yang
Gong, Yu
Zhen, Qiang
Bashir, Sajid
description We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material. [Display omitted] •MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.
doi_str_mv 10.1016/j.electacta.2018.01.072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035207072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618301038</els_id><sourcerecordid>2035207072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</originalsourceid><addsrcrecordid>eNqFkdGK1TAQhosoeFx9BgPe6EVr0rRpj3eHRd2FlRVUvAxzksma2iY1SVf7vj6I6Z5F8EoIDAzf_Pln_qJ4zmjFKBOvhwpHVAnyq2rK-oqyinb1g2LH-o6XvG_3D4sdpYyXjejF4-JJjAOltBMd3RW_PwacIUCy3hFwmsRlxqBgBmWTvUUyB58baSXekMmP61GjWyaibVxGYzWSlx_8p_oVceC8GeE7EggB1liStLibmNCRFKz_dYd-veYnMnh9zxHlp9lHm5B8w4TBD4tTm5s35EDi6jDc2JisImhMXnOz4R2W2k7oYsZgvLOdfvp_etsnE2Q9C2N8WjwyueCz-3pWfHn39vP5RXl1_f7y_HBVKt7TVEKLDQI0Zn9UwvRMsN7UQtTQH03TcaDC7FWNHAxra-Cs68URW90q02hQDfCz4sVJNx_tx4IxycEvIduJsqa8rWmXg8lUd6JU8DEGNHIOdoKwSkblFqkc5N9I5RappEyeJg-nScxL3FoMMiqLTqG2IfNSe_tfjT-D0rZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035207072</pqid></control><display><type>article</type><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><source>ScienceDirect Freedom Collection</source><creator>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</creator><creatorcontrib>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</creatorcontrib><description>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material. [Display omitted] •MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.01.072</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Array ; Arrays ; Capacitance ; Charge transfer ; Composite materials ; Copper ; Electric properties ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Heterojunction ; Heterojunctions ; Microscopes ; Molybdenum ; Molybdenum disulfide ; Nanomaterials ; Nanorods ; Scanning electron microscopy ; Substrates ; Supercapacitor ; Synergistic effect ; Tungsten oxides ; Tungsten trioxide ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Electrochimica acta, 2018-02, Vol.263, p.409-416</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</citedby><cites>FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Hanqin</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Sun, Chencen</creatorcontrib><creatorcontrib>Gao, Liangchao</creatorcontrib><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Zhen, Qiang</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><title>Electrochimica acta</title><description>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material. [Display omitted] •MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</description><subject>Array</subject><subject>Arrays</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Electric properties</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Heterojunction</subject><subject>Heterojunctions</subject><subject>Microscopes</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanomaterials</subject><subject>Nanorods</subject><subject>Scanning electron microscopy</subject><subject>Substrates</subject><subject>Supercapacitor</subject><subject>Synergistic effect</subject><subject>Tungsten oxides</subject><subject>Tungsten trioxide</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkdGK1TAQhosoeFx9BgPe6EVr0rRpj3eHRd2FlRVUvAxzksma2iY1SVf7vj6I6Z5F8EoIDAzf_Pln_qJ4zmjFKBOvhwpHVAnyq2rK-oqyinb1g2LH-o6XvG_3D4sdpYyXjejF4-JJjAOltBMd3RW_PwacIUCy3hFwmsRlxqBgBmWTvUUyB58baSXekMmP61GjWyaibVxGYzWSlx_8p_oVceC8GeE7EggB1liStLibmNCRFKz_dYd-veYnMnh9zxHlp9lHm5B8w4TBD4tTm5s35EDi6jDc2JisImhMXnOz4R2W2k7oYsZgvLOdfvp_etsnE2Q9C2N8WjwyueCz-3pWfHn39vP5RXl1_f7y_HBVKt7TVEKLDQI0Zn9UwvRMsN7UQtTQH03TcaDC7FWNHAxra-Cs68URW90q02hQDfCz4sVJNx_tx4IxycEvIduJsqa8rWmXg8lUd6JU8DEGNHIOdoKwSkblFqkc5N9I5RappEyeJg-nScxL3FoMMiqLTqG2IfNSe_tfjT-D0rZ1</recordid><startdate>20180210</startdate><enddate>20180210</enddate><creator>Gong, Hanqin</creator><creator>Zheng, Feng</creator><creator>Xu, Jiahe</creator><creator>Sun, Chencen</creator><creator>Gao, Liangchao</creator><creator>Hu, Pengfei</creator><creator>Li, Yang</creator><creator>Gong, Yu</creator><creator>Zhen, Qiang</creator><creator>Bashir, Sajid</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180210</creationdate><title>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</title><author>Gong, Hanqin ; Zheng, Feng ; Xu, Jiahe ; Sun, Chencen ; Gao, Liangchao ; Hu, Pengfei ; Li, Yang ; Gong, Yu ; Zhen, Qiang ; Bashir, Sajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Array</topic><topic>Arrays</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Electric properties</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Heterojunction</topic><topic>Heterojunctions</topic><topic>Microscopes</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanomaterials</topic><topic>Nanorods</topic><topic>Scanning electron microscopy</topic><topic>Substrates</topic><topic>Supercapacitor</topic><topic>Synergistic effect</topic><topic>Tungsten oxides</topic><topic>Tungsten trioxide</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Hanqin</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Xu, Jiahe</creatorcontrib><creatorcontrib>Sun, Chencen</creatorcontrib><creatorcontrib>Gao, Liangchao</creatorcontrib><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Zhen, Qiang</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Hanqin</au><au>Zheng, Feng</au><au>Xu, Jiahe</au><au>Sun, Chencen</au><au>Gao, Liangchao</au><au>Hu, Pengfei</au><au>Li, Yang</au><au>Gong, Yu</au><au>Zhen, Qiang</au><au>Bashir, Sajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials</atitle><jtitle>Electrochimica acta</jtitle><date>2018-02-10</date><risdate>2018</risdate><volume>263</volume><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material. [Display omitted] •MoS2 nanoflake arrays (MNFs) is prepared directly on a Cu foil.•WO3 nanoflake arrays (WNRs) is prepared on MNFs to form a heterojunction.•The MNFs-WNRs could be used as a binder-free supercapacitive electrode material.•The MNFs-WNRs exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1.•The high capacitance of MNFs-WNRs is ascribed to the synergistic effect.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.01.072</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-02, Vol.263, p.409-416
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2035207072
source ScienceDirect Freedom Collection
subjects Array
Arrays
Capacitance
Charge transfer
Composite materials
Copper
Electric properties
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Heterojunction
Heterojunctions
Microscopes
Molybdenum
Molybdenum disulfide
Nanomaterials
Nanorods
Scanning electron microscopy
Substrates
Supercapacitor
Synergistic effect
Tungsten oxides
Tungsten trioxide
X ray photoelectron spectroscopy
X-ray diffraction
title Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20supercapacitive%20property%20of%20molybdenum%20disulfide%20(MoS2)%20nanoflake%20arrays-%20tungsten%20trioxide%20(WO3)%20nanorod%20arrays%20composite%20heterojunction:%20A%20synergistic%20effect%20of%20one-dimensional%20and%20two-dimensional%20nanomaterials&rft.jtitle=Electrochimica%20acta&rft.au=Gong,%20Hanqin&rft.date=2018-02-10&rft.volume=263&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.01.072&rft_dat=%3Cproquest_cross%3E2035207072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-a5e4eaa4f9bc6f81618f2662a8bf473a06f9c2e3af152a31786be5d5cf4dac4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035207072&rft_id=info:pmid/&rfr_iscdi=true