Loading…

Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes

Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (Cu...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-05, Vol.28 (19), p.n/a
Main Authors: Foley, Sarah, Geaney, Hugh, Bree, Gerard, Stokes, Killian, Connolly, Sinead, Zaworotko, Michael J., Ryan, Kevin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3
cites cdi_FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 28
creator Foley, Sarah
Geaney, Hugh
Bree, Gerard
Stokes, Killian
Connolly, Sinead
Zaworotko, Michael J.
Ryan, Kevin M.
description Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g−1 after 200 charge/discharge cycles. The phase‐controlled synthesis of copper sulfide (CuxS) nanowire‐in‐carbon composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework is developed. The tunable formation of different CuxS phases within the carbon network demonstrates a facile method for the production of effective cathode materials for Li‐ion batteries.
doi_str_mv 10.1002/adfm.201800587
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035251197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035251197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3</originalsourceid><addsrcrecordid>eNqFkc9u00AQxi0EEqVw5bwSF3pI2D9e2zm2bkOrpvSQVOJmrXdnyZbY686uFdJTH4En4aF4km4JKkcuM6OZ3_fN4cuy94xOGaX8kzK2m3LKKkplVb7IDljBiomgvHr5PLOvr7M3IdxSyspS5AfZr9oPAyBZjhvrDJCP9fhjeUS-qN5vHcLvh5-uT6VW2Pqe1L4bfHARApl77MAQi74jp4nU8Y_HiO5eRZdYb0lcA7mCqDbJ4Rq_qd5pMkfVwdbjd3J-ebNcpQsjqjdktQaH5CYAUYEsXNpfJJMTFSPgjtQqrr2B8DZ7ZdUmwLu__TBbzc9W9flkcf35oj5eTLSQeTkppdZyRiumwfJcalsWVW6otm1ri6o1ZZFz1lZGGCo5l61oBVOKW5u3Qs2MOMw-7G0H9HcjhNjc-hH79LHhVEguGZuViZruKY0-BATbDOg6hbuG0eYpkuYpkuY5kiSY7QVbt4Hdf-jm-HR-9U_7CBPslqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035251197</pqid></control><display><type>article</type><title>Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes</title><source>Wiley</source><creator>Foley, Sarah ; Geaney, Hugh ; Bree, Gerard ; Stokes, Killian ; Connolly, Sinead ; Zaworotko, Michael J. ; Ryan, Kevin M.</creator><creatorcontrib>Foley, Sarah ; Geaney, Hugh ; Bree, Gerard ; Stokes, Killian ; Connolly, Sinead ; Zaworotko, Michael J. ; Ryan, Kevin M.</creatorcontrib><description>Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g−1 after 200 charge/discharge cycles. The phase‐controlled synthesis of copper sulfide (CuxS) nanowire‐in‐carbon composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework is developed. The tunable formation of different CuxS phases within the carbon network demonstrates a facile method for the production of effective cathode materials for Li‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800587</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; carbon materials ; Cathodes ; Composite materials ; Copper ; Copper sulfides ; Electric vehicles ; Electrode materials ; Electronic devices ; Energy transmission ; Flux density ; Lithium ; lithium‐ion batteries ; Materials science ; Metal-organic frameworks ; metal‐organic framework ; nanocomposites ; Nanowires ; Sulfurization ; Thermogravimetric analysis ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Advanced functional materials, 2018-05, Vol.28 (19), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3</citedby><cites>FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3</cites><orcidid>0000-0003-3670-8505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Foley, Sarah</creatorcontrib><creatorcontrib>Geaney, Hugh</creatorcontrib><creatorcontrib>Bree, Gerard</creatorcontrib><creatorcontrib>Stokes, Killian</creatorcontrib><creatorcontrib>Connolly, Sinead</creatorcontrib><creatorcontrib>Zaworotko, Michael J.</creatorcontrib><creatorcontrib>Ryan, Kevin M.</creatorcontrib><title>Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes</title><title>Advanced functional materials</title><description>Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g−1 after 200 charge/discharge cycles. The phase‐controlled synthesis of copper sulfide (CuxS) nanowire‐in‐carbon composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework is developed. The tunable formation of different CuxS phases within the carbon network demonstrates a facile method for the production of effective cathode materials for Li‐ion batteries.</description><subject>Batteries</subject><subject>carbon materials</subject><subject>Cathodes</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Copper sulfides</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electronic devices</subject><subject>Energy transmission</subject><subject>Flux density</subject><subject>Lithium</subject><subject>lithium‐ion batteries</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>metal‐organic framework</subject><subject>nanocomposites</subject><subject>Nanowires</subject><subject>Sulfurization</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u00AQxi0EEqVw5bwSF3pI2D9e2zm2bkOrpvSQVOJmrXdnyZbY686uFdJTH4En4aF4km4JKkcuM6OZ3_fN4cuy94xOGaX8kzK2m3LKKkplVb7IDljBiomgvHr5PLOvr7M3IdxSyspS5AfZr9oPAyBZjhvrDJCP9fhjeUS-qN5vHcLvh5-uT6VW2Pqe1L4bfHARApl77MAQi74jp4nU8Y_HiO5eRZdYb0lcA7mCqDbJ4Rq_qd5pMkfVwdbjd3J-ebNcpQsjqjdktQaH5CYAUYEsXNpfJJMTFSPgjtQqrr2B8DZ7ZdUmwLu__TBbzc9W9flkcf35oj5eTLSQeTkppdZyRiumwfJcalsWVW6otm1ri6o1ZZFz1lZGGCo5l61oBVOKW5u3Qs2MOMw-7G0H9HcjhNjc-hH79LHhVEguGZuViZruKY0-BATbDOg6hbuG0eYpkuYpkuY5kiSY7QVbt4Hdf-jm-HR-9U_7CBPslqw</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Foley, Sarah</creator><creator>Geaney, Hugh</creator><creator>Bree, Gerard</creator><creator>Stokes, Killian</creator><creator>Connolly, Sinead</creator><creator>Zaworotko, Michael J.</creator><creator>Ryan, Kevin M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3670-8505</orcidid></search><sort><creationdate>20180509</creationdate><title>Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes</title><author>Foley, Sarah ; Geaney, Hugh ; Bree, Gerard ; Stokes, Killian ; Connolly, Sinead ; Zaworotko, Michael J. ; Ryan, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>carbon materials</topic><topic>Cathodes</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Copper sulfides</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electronic devices</topic><topic>Energy transmission</topic><topic>Flux density</topic><topic>Lithium</topic><topic>lithium‐ion batteries</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>metal‐organic framework</topic><topic>nanocomposites</topic><topic>Nanowires</topic><topic>Sulfurization</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, Sarah</creatorcontrib><creatorcontrib>Geaney, Hugh</creatorcontrib><creatorcontrib>Bree, Gerard</creatorcontrib><creatorcontrib>Stokes, Killian</creatorcontrib><creatorcontrib>Connolly, Sinead</creatorcontrib><creatorcontrib>Zaworotko, Michael J.</creatorcontrib><creatorcontrib>Ryan, Kevin M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, Sarah</au><au>Geaney, Hugh</au><au>Bree, Gerard</au><au>Stokes, Killian</au><au>Connolly, Sinead</au><au>Zaworotko, Michael J.</au><au>Ryan, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes</atitle><jtitle>Advanced functional materials</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>28</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g−1 after 200 charge/discharge cycles. The phase‐controlled synthesis of copper sulfide (CuxS) nanowire‐in‐carbon composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework is developed. The tunable formation of different CuxS phases within the carbon network demonstrates a facile method for the production of effective cathode materials for Li‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800587</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3670-8505</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-05, Vol.28 (19), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2035251197
source Wiley
subjects Batteries
carbon materials
Cathodes
Composite materials
Copper
Copper sulfides
Electric vehicles
Electrode materials
Electronic devices
Energy transmission
Flux density
Lithium
lithium‐ion batteries
Materials science
Metal-organic frameworks
metal‐organic framework
nanocomposites
Nanowires
Sulfurization
Thermogravimetric analysis
Transmission electron microscopy
X-ray diffraction
title Copper Sulfide (CuxS) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20Sulfide%20(CuxS)%20Nanowire%E2%80%90in%E2%80%90Carbon%20Composites%20Formed%20from%20Direct%20Sulfurization%20of%20the%20Metal%E2%80%90Organic%20Framework%20HKUST%E2%80%901%20and%20Their%20Use%20as%20Li%E2%80%90Ion%20Battery%20Cathodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Foley,%20Sarah&rft.date=2018-05-09&rft.volume=28&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800587&rft_dat=%3Cproquest_cross%3E2035251197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3547-75cc59081cef245cf7684d0cfbbf68bd76421b8d3d05225b3b31aa2ff4b3a9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035251197&rft_id=info:pmid/&rfr_iscdi=true