Loading…
Prediction of stellar occultations by distant solar system bodies in the Gaia era
Stellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellit...
Saved in:
Published in: | Proceedings of the International Astronomical Union 2017-04, Vol.12 (S330), p.382-385 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings) of Transneptunian objects and Centaurs. This technique is made successful thanks to accurate predictions of occultations. Accuracy of the predictions depends on the uncertainty in the position of the occulted star and the object's orbit. The Gaia stellar catalogue (Gaia Collaboration (2017)) now allows to get accurate astrometric stellar positions (to the mas level). The main uncertainty remains on the orbit. In this context, we now take advantage of the NIMA method (Desmars et al.(2015)) for the orbit determination and of the Gaia DR1 catalogue for the astrometry. In this document, we show how the orbit determination is improved by reducing current and some past observations with Gaia DR1. Moreover, we also use more than 45 past positive occultations observed in the 2009-2017 period to derive very accurate astrometric positions only depending on the position of the occulted stars (about few mas with Gaia DR1). We use the case of (10199) Chariklo as an illustration. The main limitation lies in the imprecision of the proper motions which is going to be solved by the Gaia DR2 release. |
---|---|
ISSN: | 1743-9213 1743-9221 |
DOI: | 10.1017/S1743921317006226 |