Loading…
Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming
The settlement design of bored piles socketed into rock has received considerable attention. Although many design methods of pile settlement are recommended in the literature, proposing new/practical technique(s) with higher performance prediction is of advantage. A new model based on gene expressio...
Saved in:
Published in: | Neural computing & applications 2018-06, Vol.29 (11), p.1115-1125 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The settlement design of bored piles socketed into rock has received considerable attention. Although many design methods of pile settlement are recommended in the literature, proposing new/practical technique(s) with higher performance prediction is of advantage. A new model based on gene expression programming (GEP) is presented in this paper for predicting the settlement of the rock-socketed pile. To do this, 96 piles socketed in different types of rock (mostly granite) as part of the Klang Valley Mass Rapid Transit project, Malaysia, were studied. In order to propose a predictive model with higher performance prediction, a series of GEP analyses were conducted using the most important factors on pile settlement, i.e. ratio of length in soil layer to length in rock layer, ratio of total length to diameter, uniaxial compressive strength, standard penetration test and ultimate bearing capacity. For comparison purpose, using the same dataset, linear multiple regression (LMR) technique was also performed. After developing the equations, their prediction performances were checked through several performance indices. The results demonstrated the feasibility of GEP-based predictive model of settlement. Coefficients of determination (CoD) values of 0.872 and 0.861 for training and testing datasets of GEP equation, respectively, show superiority of this model in predicting pile settlement while these values were obtained as 0.835 and 0.751 for the LMR model. Moreover, root mean square error (RMSE) values of (1.293 and 1.656 for training and testing) and (1.737 and 1.767 for training and testing) were achieved for the developed GEP and LMR models, respectively. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-016-2618-8 |