Loading…

Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure

The link between subglacial hydrology and basal sliding has prompted work on basal hydrology models with water pressure and drainage capacity as prognostic variables. We find that the Glacier Drainage System model, which belongs to a commonly used family of subglacial hydrology models that include b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Earth surface 2018-04, Vol.123 (4), p.818-836
Main Authors: Downs, Jacob Z., Johnson, Jesse V., Harper, Joel T., Meierbachtol, Toby, Werder, Mauro A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3
cites cdi_FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3
container_end_page 836
container_issue 4
container_start_page 818
container_title Journal of geophysical research. Earth surface
container_volume 123
creator Downs, Jacob Z.
Johnson, Jesse V.
Harper, Joel T.
Meierbachtol, Toby
Werder, Mauro A.
description The link between subglacial hydrology and basal sliding has prompted work on basal hydrology models with water pressure and drainage capacity as prognostic variables. We find that the Glacier Drainage System model, which belongs to a commonly used family of subglacial hydrology models that include both channelized and distributed drainage components, underpredicts winter water pressure when compared to borehole observations from western Greenland given a wide range of plausible parameter values and inputs. This problem, though previously noted by other modelers, has not been addressed. Possible causes for the discrepancy including idealized model inputs or unconstrained parameters are investigated through a series of modeling experiments on both synthetic and realistic ice sheet geometries. Numerical experiments reveal that englacial storage and hydraulic conductivity in the distributed system are the primary controls on winter water pressure in Glacier Drainage System model. Observations of temperate layer thickness and englacial water content from western Greenland imply an upper bound on englacial storage, suggesting that a reduction in hydraulic conductivity is the most plausible cause of high winter water pressure. We conclude that hydraulic conductivity acts as a proxy for the subgrid‐scale connectivity of the linked cavity system and should therefore change seasonally in correspondence with melt water availability. Key Points A commonly used drainage model formulation underpredicts observations of water pressure in winter Englacial storage elevates modeled winter pressure, but observations indicate that storage is limited Decreasing hydraulic conductivity is physically plausible and reproduces winter pressure observations
doi_str_mv 10.1002/2017JF004522
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036674342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036674342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLQ3f0DAq6v52K8etdrW0lJphR5DNployna3Jrst--9NqYgn5zLvvDzMMC9CN5TcU0LYAyM0m44IiRPGzlCP0XQQDQil57-a8EvU935DQuXBoqyHds9dJbdW4UmnnWzLoIZ1pVvV2L1tOrwEVVfKluDx3PqtbNQnfoLmAFDhea2hBI1lpfGi8OD2YVjbqgGHV23xUUplZYnX8mi8OfC-dXCNLowsPfR_-hVajV7eh5Nothi_Dh9nkeScJFEW3khSDlkcc86LLI3zxAyMNDHLNWO5VMBpZhQpNKNAWJHz1FAoQikj-RW6PW3dufqrBd-ITd26KhwUjPA0zWIes0DdnSjlau8dGLFzditdJygRx1DF31ADzk_4IeTR_cuK6Xg5YiHlhH8Dh9l41w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036674342</pqid></control><display><type>article</type><title>Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Downs, Jacob Z. ; Johnson, Jesse V. ; Harper, Joel T. ; Meierbachtol, Toby ; Werder, Mauro A.</creator><creatorcontrib>Downs, Jacob Z. ; Johnson, Jesse V. ; Harper, Joel T. ; Meierbachtol, Toby ; Werder, Mauro A.</creatorcontrib><description>The link between subglacial hydrology and basal sliding has prompted work on basal hydrology models with water pressure and drainage capacity as prognostic variables. We find that the Glacier Drainage System model, which belongs to a commonly used family of subglacial hydrology models that include both channelized and distributed drainage components, underpredicts winter water pressure when compared to borehole observations from western Greenland given a wide range of plausible parameter values and inputs. This problem, though previously noted by other modelers, has not been addressed. Possible causes for the discrepancy including idealized model inputs or unconstrained parameters are investigated through a series of modeling experiments on both synthetic and realistic ice sheet geometries. Numerical experiments reveal that englacial storage and hydraulic conductivity in the distributed system are the primary controls on winter water pressure in Glacier Drainage System model. Observations of temperate layer thickness and englacial water content from western Greenland imply an upper bound on englacial storage, suggesting that a reduction in hydraulic conductivity is the most plausible cause of high winter water pressure. We conclude that hydraulic conductivity acts as a proxy for the subgrid‐scale connectivity of the linked cavity system and should therefore change seasonally in correspondence with melt water availability. Key Points A commonly used drainage model formulation underpredicts observations of water pressure in winter Englacial storage elevates modeled winter pressure, but observations indicate that storage is limited Decreasing hydraulic conductivity is physically plausible and reproduces winter pressure observations</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1002/2017JF004522</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boreholes ; Computer networks ; Conductivity ; Drainage control ; Drainage systems ; Glaciation ; Glaciers ; Glaciohydrology ; Hydraulic conductivity ; Hydraulics ; Hydrologic models ; Hydrology ; Hydrostatic pressure ; Ice sheets ; Meltwater ; modeling ; Modelling ; Moisture content ; Numerical experiments ; Parameters ; Pressure ; Stress concentration ; subglacial ; Subglacial water ; Thickness ; Upper bounds ; water ; Water availability ; Water content ; Water pressure ; Winter</subject><ispartof>Journal of geophysical research. Earth surface, 2018-04, Vol.123 (4), p.818-836</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3</citedby><cites>FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3</cites><orcidid>0000-0002-2151-8509 ; 0000-0002-7387-6500 ; 0000-0002-8487-7920 ; 0000-0003-0137-9377 ; 0000-0002-5588-7767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JF004522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JF004522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Downs, Jacob Z.</creatorcontrib><creatorcontrib>Johnson, Jesse V.</creatorcontrib><creatorcontrib>Harper, Joel T.</creatorcontrib><creatorcontrib>Meierbachtol, Toby</creatorcontrib><creatorcontrib>Werder, Mauro A.</creatorcontrib><title>Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure</title><title>Journal of geophysical research. Earth surface</title><description>The link between subglacial hydrology and basal sliding has prompted work on basal hydrology models with water pressure and drainage capacity as prognostic variables. We find that the Glacier Drainage System model, which belongs to a commonly used family of subglacial hydrology models that include both channelized and distributed drainage components, underpredicts winter water pressure when compared to borehole observations from western Greenland given a wide range of plausible parameter values and inputs. This problem, though previously noted by other modelers, has not been addressed. Possible causes for the discrepancy including idealized model inputs or unconstrained parameters are investigated through a series of modeling experiments on both synthetic and realistic ice sheet geometries. Numerical experiments reveal that englacial storage and hydraulic conductivity in the distributed system are the primary controls on winter water pressure in Glacier Drainage System model. Observations of temperate layer thickness and englacial water content from western Greenland imply an upper bound on englacial storage, suggesting that a reduction in hydraulic conductivity is the most plausible cause of high winter water pressure. We conclude that hydraulic conductivity acts as a proxy for the subgrid‐scale connectivity of the linked cavity system and should therefore change seasonally in correspondence with melt water availability. Key Points A commonly used drainage model formulation underpredicts observations of water pressure in winter Englacial storage elevates modeled winter pressure, but observations indicate that storage is limited Decreasing hydraulic conductivity is physically plausible and reproduces winter pressure observations</description><subject>Boreholes</subject><subject>Computer networks</subject><subject>Conductivity</subject><subject>Drainage control</subject><subject>Drainage systems</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Glaciohydrology</subject><subject>Hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hydrostatic pressure</subject><subject>Ice sheets</subject><subject>Meltwater</subject><subject>modeling</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Numerical experiments</subject><subject>Parameters</subject><subject>Pressure</subject><subject>Stress concentration</subject><subject>subglacial</subject><subject>Subglacial water</subject><subject>Thickness</subject><subject>Upper bounds</subject><subject>water</subject><subject>Water availability</subject><subject>Water content</subject><subject>Water pressure</subject><subject>Winter</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLQ3f0DAq6v52K8etdrW0lJphR5DNployna3Jrst--9NqYgn5zLvvDzMMC9CN5TcU0LYAyM0m44IiRPGzlCP0XQQDQil57-a8EvU935DQuXBoqyHds9dJbdW4UmnnWzLoIZ1pVvV2L1tOrwEVVfKluDx3PqtbNQnfoLmAFDhea2hBI1lpfGi8OD2YVjbqgGHV23xUUplZYnX8mi8OfC-dXCNLowsPfR_-hVajV7eh5Nothi_Dh9nkeScJFEW3khSDlkcc86LLI3zxAyMNDHLNWO5VMBpZhQpNKNAWJHz1FAoQikj-RW6PW3dufqrBd-ITd26KhwUjPA0zWIes0DdnSjlau8dGLFzditdJygRx1DF31ADzk_4IeTR_cuK6Xg5YiHlhH8Dh9l41w</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Downs, Jacob Z.</creator><creator>Johnson, Jesse V.</creator><creator>Harper, Joel T.</creator><creator>Meierbachtol, Toby</creator><creator>Werder, Mauro A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2151-8509</orcidid><orcidid>https://orcid.org/0000-0002-7387-6500</orcidid><orcidid>https://orcid.org/0000-0002-8487-7920</orcidid><orcidid>https://orcid.org/0000-0003-0137-9377</orcidid><orcidid>https://orcid.org/0000-0002-5588-7767</orcidid></search><sort><creationdate>201804</creationdate><title>Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure</title><author>Downs, Jacob Z. ; Johnson, Jesse V. ; Harper, Joel T. ; Meierbachtol, Toby ; Werder, Mauro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boreholes</topic><topic>Computer networks</topic><topic>Conductivity</topic><topic>Drainage control</topic><topic>Drainage systems</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Glaciohydrology</topic><topic>Hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hydrostatic pressure</topic><topic>Ice sheets</topic><topic>Meltwater</topic><topic>modeling</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Numerical experiments</topic><topic>Parameters</topic><topic>Pressure</topic><topic>Stress concentration</topic><topic>subglacial</topic><topic>Subglacial water</topic><topic>Thickness</topic><topic>Upper bounds</topic><topic>water</topic><topic>Water availability</topic><topic>Water content</topic><topic>Water pressure</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Downs, Jacob Z.</creatorcontrib><creatorcontrib>Johnson, Jesse V.</creatorcontrib><creatorcontrib>Harper, Joel T.</creatorcontrib><creatorcontrib>Meierbachtol, Toby</creatorcontrib><creatorcontrib>Werder, Mauro A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downs, Jacob Z.</au><au>Johnson, Jesse V.</au><au>Harper, Joel T.</au><au>Meierbachtol, Toby</au><au>Werder, Mauro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2018-04</date><risdate>2018</risdate><volume>123</volume><issue>4</issue><spage>818</spage><epage>836</epage><pages>818-836</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>The link between subglacial hydrology and basal sliding has prompted work on basal hydrology models with water pressure and drainage capacity as prognostic variables. We find that the Glacier Drainage System model, which belongs to a commonly used family of subglacial hydrology models that include both channelized and distributed drainage components, underpredicts winter water pressure when compared to borehole observations from western Greenland given a wide range of plausible parameter values and inputs. This problem, though previously noted by other modelers, has not been addressed. Possible causes for the discrepancy including idealized model inputs or unconstrained parameters are investigated through a series of modeling experiments on both synthetic and realistic ice sheet geometries. Numerical experiments reveal that englacial storage and hydraulic conductivity in the distributed system are the primary controls on winter water pressure in Glacier Drainage System model. Observations of temperate layer thickness and englacial water content from western Greenland imply an upper bound on englacial storage, suggesting that a reduction in hydraulic conductivity is the most plausible cause of high winter water pressure. We conclude that hydraulic conductivity acts as a proxy for the subgrid‐scale connectivity of the linked cavity system and should therefore change seasonally in correspondence with melt water availability. Key Points A commonly used drainage model formulation underpredicts observations of water pressure in winter Englacial storage elevates modeled winter pressure, but observations indicate that storage is limited Decreasing hydraulic conductivity is physically plausible and reproduces winter pressure observations</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JF004522</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2151-8509</orcidid><orcidid>https://orcid.org/0000-0002-7387-6500</orcidid><orcidid>https://orcid.org/0000-0002-8487-7920</orcidid><orcidid>https://orcid.org/0000-0003-0137-9377</orcidid><orcidid>https://orcid.org/0000-0002-5588-7767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9003
ispartof Journal of geophysical research. Earth surface, 2018-04, Vol.123 (4), p.818-836
issn 2169-9003
2169-9011
language eng
recordid cdi_proquest_journals_2036674342
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive
subjects Boreholes
Computer networks
Conductivity
Drainage control
Drainage systems
Glaciation
Glaciers
Glaciohydrology
Hydraulic conductivity
Hydraulics
Hydrologic models
Hydrology
Hydrostatic pressure
Ice sheets
Meltwater
modeling
Modelling
Moisture content
Numerical experiments
Parameters
Pressure
Stress concentration
subglacial
Subglacial water
Thickness
Upper bounds
water
Water availability
Water content
Water pressure
Winter
title Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Hydraulic%20Conductivity%20Reconciles%20Mismatch%20Between%20Modeled%20and%20Observed%20Winter%20Subglacial%20Water%20Pressure&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Downs,%20Jacob%20Z.&rft.date=2018-04&rft.volume=123&rft.issue=4&rft.spage=818&rft.epage=836&rft.pages=818-836&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1002/2017JF004522&rft_dat=%3Cproquest_cross%3E2036674342%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3305-7452563e744333b76485f9faf428d228ace317fc0bd21e02b836f1ebbbbcfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036674342&rft_id=info:pmid/&rfr_iscdi=true