Loading…

When Does f-1= 1/f?

Equations concerning functions satisfying f-1=1/f are presented. Cheng et al focus on equations whose domains are more general subsets of the real line R, or of the complex plane C.

Saved in:
Bibliographic Details
Published in:The American mathematical monthly 1998-10, Vol.105 (8), p.704-717
Main Authors: Cheng, R., Dasgupta, A., Ebanks, B. R., Kinch, L. F., Larson, L. M., McFadden, R. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353
cites cdi_FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353
container_end_page 717
container_issue 8
container_start_page 704
container_title The American mathematical monthly
container_volume 105
creator Cheng, R.
Dasgupta, A.
Ebanks, B. R.
Kinch, L. F.
Larson, L. M.
McFadden, R. B.
description Equations concerning functions satisfying f-1=1/f are presented. Cheng et al focus on equations whose domains are more general subsets of the real line R, or of the complex plane C.
doi_str_mv 10.1080/00029890.1998.12004952
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_203722279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2588987</jstor_id><sourcerecordid>2588987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353</originalsourceid><addsrcrecordid>eNpNj01LAzEQhoMouFZP3mURr2knk00zcxCR-gkFL4rHkP0Iumi3Ju3Bf99d1oKn4YXnfYdHiAsFUwUEMwBAJu4TM00VAhRs8EBkijVIYIuHIhsgOVDH4iSlto9gCszE-ftHs8rvuiblQarrXM3Czak4Cv4rNWd_dyLeHu5fF09y-fL4vLhdykqZOcuCNVZlAcpyDYa4ZstASpeBS-wD-oCafF1wKLwmCtpWoQZFnqwHbfREXI6769j9bJu0cW23jav-pUPQFhEt99B8hKrYpRSb4Nbx89vHX6fADf5u7-8Gf7f374tXY7FNmy7-b6EG69AQMVm9A3hUU50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203722279</pqid></control><display><type>article</type><title>When Does f-1= 1/f?</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>Education Collection</source><creator>Cheng, R. ; Dasgupta, A. ; Ebanks, B. R. ; Kinch, L. F. ; Larson, L. M. ; McFadden, R. B.</creator><creatorcontrib>Cheng, R. ; Dasgupta, A. ; Ebanks, B. R. ; Kinch, L. F. ; Larson, L. M. ; McFadden, R. B.</creatorcontrib><description>Equations concerning functions satisfying f-1=1/f are presented. Cheng et al focus on equations whose domains are more general subsets of the real line R, or of the complex plane C.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.1998.12004952</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Analytic functions ; Calculus ; College Mathematics ; Connected regions ; Entire functions ; Geometric planes ; Logarithms ; Mathematical functions ; Mathematics ; Roots of functions ; Simply connected regions</subject><ispartof>The American mathematical monthly, 1998-10, Vol.105 (8), p.704-717</ispartof><rights>Copyright 1998 Mathematical Association of America</rights><rights>Copyright Mathematical Association Of America Oct 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353</citedby><cites>FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203722279/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203722279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21378,21394,27924,27925,33611,33877,43733,43880,58238,58471,74221,74397</link.rule.ids></links><search><creatorcontrib>Cheng, R.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ebanks, B. R.</creatorcontrib><creatorcontrib>Kinch, L. F.</creatorcontrib><creatorcontrib>Larson, L. M.</creatorcontrib><creatorcontrib>McFadden, R. B.</creatorcontrib><title>When Does f-1= 1/f?</title><title>The American mathematical monthly</title><description>Equations concerning functions satisfying f-1=1/f are presented. Cheng et al focus on equations whose domains are more general subsets of the real line R, or of the complex plane C.</description><subject>Analytic functions</subject><subject>Calculus</subject><subject>College Mathematics</subject><subject>Connected regions</subject><subject>Entire functions</subject><subject>Geometric planes</subject><subject>Logarithms</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Roots of functions</subject><subject>Simply connected regions</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNpNj01LAzEQhoMouFZP3mURr2knk00zcxCR-gkFL4rHkP0Iumi3Ju3Bf99d1oKn4YXnfYdHiAsFUwUEMwBAJu4TM00VAhRs8EBkijVIYIuHIhsgOVDH4iSlto9gCszE-ftHs8rvuiblQarrXM3Czak4Cv4rNWd_dyLeHu5fF09y-fL4vLhdykqZOcuCNVZlAcpyDYa4ZstASpeBS-wD-oCafF1wKLwmCtpWoQZFnqwHbfREXI6769j9bJu0cW23jav-pUPQFhEt99B8hKrYpRSb4Nbx89vHX6fADf5u7-8Gf7f374tXY7FNmy7-b6EG69AQMVm9A3hUU50</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Cheng, R.</creator><creator>Dasgupta, A.</creator><creator>Ebanks, B. R.</creator><creator>Kinch, L. F.</creator><creator>Larson, L. M.</creator><creator>McFadden, R. B.</creator><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19981001</creationdate><title>When Does f-1= 1/f?</title><author>Cheng, R. ; Dasgupta, A. ; Ebanks, B. R. ; Kinch, L. F. ; Larson, L. M. ; McFadden, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analytic functions</topic><topic>Calculus</topic><topic>College Mathematics</topic><topic>Connected regions</topic><topic>Entire functions</topic><topic>Geometric planes</topic><topic>Logarithms</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Roots of functions</topic><topic>Simply connected regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, R.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ebanks, B. R.</creatorcontrib><creatorcontrib>Kinch, L. F.</creatorcontrib><creatorcontrib>Larson, L. M.</creatorcontrib><creatorcontrib>McFadden, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, R.</au><au>Dasgupta, A.</au><au>Ebanks, B. R.</au><au>Kinch, L. F.</au><au>Larson, L. M.</au><au>McFadden, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Does f-1= 1/f?</atitle><jtitle>The American mathematical monthly</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>105</volume><issue>8</issue><spage>704</spage><epage>717</epage><pages>704-717</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Equations concerning functions satisfying f-1=1/f are presented. Cheng et al focus on equations whose domains are more general subsets of the real line R, or of the complex plane C.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.1080/00029890.1998.12004952</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 1998-10, Vol.105 (8), p.704-717
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_203722279
source JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); Education Collection
subjects Analytic functions
Calculus
College Mathematics
Connected regions
Entire functions
Geometric planes
Logarithms
Mathematical functions
Mathematics
Roots of functions
Simply connected regions
title When Does f-1= 1/f?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Does%20f-1=%201/f?&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Cheng,%20R.&rft.date=1998-10-01&rft.volume=105&rft.issue=8&rft.spage=704&rft.epage=717&rft.pages=704-717&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.1998.12004952&rft_dat=%3Cjstor_proqu%3E2588987%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1569-4932cb40179d0589d9790813bf9b2d972af238ad49f4a388f37cfd018a87a0353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203722279&rft_id=info:pmid/&rft_jstor_id=2588987&rfr_iscdi=true