Loading…

Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations

Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based o...

Full description

Saved in:
Bibliographic Details
Published in:Advances in manufacturing 2018-09, Vol.6 (3), p.301-307
Main Authors: Wiederkehr, P., Siebrecht, T., Baumann, J., Biermann, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93
cites cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93
container_end_page 307
container_issue 3
container_start_page 301
container_title Advances in manufacturing
container_volume 6
creator Wiederkehr, P.
Siebrecht, T.
Baumann, J.
Biermann, D.
description Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.
doi_str_mv 10.1007/s40436-018-0219-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037265546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037265546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOIzzAO4CrqtJ0-ZnKYN_MKALXYc0vZ2pdJqapKJv4GObTgdcuboH7nfOvRyELim5poSIm1CQgvGMUJmRnKpMnqBFmmXGSiVOkyaTprk4R6sQ2orkfNpQvkA_L67tY1aZADWOznXYw-AhQB9NbF0fcOM83rsaurbfYuv2QwdfMxl2ZoCATV9jP_ZujAc27gCHdj92Bz92DR68sxAOSfbI252JETz-bCs_37lAZ43pAqyOc4ne7u9e14_Z5vnhaX27ySyjPGZK1YLb0qq8YDUTjFpgpLJSgCSyFkWlJK2okaY0BRSNakpV5JITxkUNrFZsia7m3PTVxwgh6nc3-j6d1DlhIudlWfBE0Zmy3oXgodGDb_fGf2tK9NS5njvXqXM9da5l8uSzJyS234L_S_7f9AsySIbR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037265546</pqid></control><display><type>article</type><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><source>Springer Nature</source><creator>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</creator><creatorcontrib>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</creatorcontrib><description>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</description><identifier>ISSN: 2095-3127</identifier><identifier>EISSN: 2195-3597</identifier><identifier>DOI: 10.1007/s40436-018-0219-8</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Aerospace industry ; Automobile industry ; Automotive engineering ; Chatter ; Complexity ; Computer simulation ; Constructive solid geometry ; Control ; Engineering ; Five axis ; Machines ; Manufacturing ; Mechatronics ; Milling (machining) ; Modelling ; Nanotechnology and Microengineering ; Processes ; Robotics ; Simulation ; Surface properties ; Vibration</subject><ispartof>Advances in manufacturing, 2018-09, Vol.6 (3), p.301-307</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Advances in Manufacturing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</citedby><cites>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</cites><orcidid>0000-0001-8821-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wiederkehr, P.</creatorcontrib><creatorcontrib>Siebrecht, T.</creatorcontrib><creatorcontrib>Baumann, J.</creatorcontrib><creatorcontrib>Biermann, D.</creatorcontrib><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><title>Advances in manufacturing</title><addtitle>Adv. Manuf</addtitle><description>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</description><subject>Aerospace industry</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Chatter</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Constructive solid geometry</subject><subject>Control</subject><subject>Engineering</subject><subject>Five axis</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Milling (machining)</subject><subject>Modelling</subject><subject>Nanotechnology and Microengineering</subject><subject>Processes</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Surface properties</subject><subject>Vibration</subject><issn>2095-3127</issn><issn>2195-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOIzzAO4CrqtJ0-ZnKYN_MKALXYc0vZ2pdJqapKJv4GObTgdcuboH7nfOvRyELim5poSIm1CQgvGMUJmRnKpMnqBFmmXGSiVOkyaTprk4R6sQ2orkfNpQvkA_L67tY1aZADWOznXYw-AhQB9NbF0fcOM83rsaurbfYuv2QwdfMxl2ZoCATV9jP_ZujAc27gCHdj92Bz92DR68sxAOSfbI252JETz-bCs_37lAZ43pAqyOc4ne7u9e14_Z5vnhaX27ySyjPGZK1YLb0qq8YDUTjFpgpLJSgCSyFkWlJK2okaY0BRSNakpV5JITxkUNrFZsia7m3PTVxwgh6nc3-j6d1DlhIudlWfBE0Zmy3oXgodGDb_fGf2tK9NS5njvXqXM9da5l8uSzJyS234L_S_7f9AsySIbR</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Wiederkehr, P.</creator><creator>Siebrecht, T.</creator><creator>Baumann, J.</creator><creator>Biermann, D.</creator><general>Shanghai University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8821-7770</orcidid></search><sort><creationdate>20180901</creationdate><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><author>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace industry</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Chatter</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Constructive solid geometry</topic><topic>Control</topic><topic>Engineering</topic><topic>Five axis</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Milling (machining)</topic><topic>Modelling</topic><topic>Nanotechnology and Microengineering</topic><topic>Processes</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Surface properties</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiederkehr, P.</creatorcontrib><creatorcontrib>Siebrecht, T.</creatorcontrib><creatorcontrib>Baumann, J.</creatorcontrib><creatorcontrib>Biermann, D.</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Advances in manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiederkehr, P.</au><au>Siebrecht, T.</au><au>Baumann, J.</au><au>Biermann, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</atitle><jtitle>Advances in manufacturing</jtitle><stitle>Adv. Manuf</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>6</volume><issue>3</issue><spage>301</spage><epage>307</epage><pages>301-307</pages><issn>2095-3127</issn><eissn>2195-3597</eissn><abstract>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s40436-018-0219-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8821-7770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-3127
ispartof Advances in manufacturing, 2018-09, Vol.6 (3), p.301-307
issn 2095-3127
2195-3597
language eng
recordid cdi_proquest_journals_2037265546
source Springer Nature
subjects Aerospace industry
Automobile industry
Automotive engineering
Chatter
Complexity
Computer simulation
Constructive solid geometry
Control
Engineering
Five axis
Machines
Manufacturing
Mechatronics
Milling (machining)
Modelling
Nanotechnology and Microengineering
Processes
Robotics
Simulation
Surface properties
Vibration
title Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point-based%20tool%20representations%20for%20modeling%20complex%20tool%20shapes%20and%20runout%20for%20the%20simulation%20of%20process%20forces%20and%20chatter%20vibrations&rft.jtitle=Advances%20in%20manufacturing&rft.au=Wiederkehr,%20P.&rft.date=2018-09-01&rft.volume=6&rft.issue=3&rft.spage=301&rft.epage=307&rft.pages=301-307&rft.issn=2095-3127&rft.eissn=2195-3597&rft_id=info:doi/10.1007/s40436-018-0219-8&rft_dat=%3Cproquest_cross%3E2037265546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2037265546&rft_id=info:pmid/&rfr_iscdi=true