Loading…
Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations
Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based o...
Saved in:
Published in: | Advances in manufacturing 2018-09, Vol.6 (3), p.301-307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93 |
container_end_page | 307 |
container_issue | 3 |
container_start_page | 301 |
container_title | Advances in manufacturing |
container_volume | 6 |
creator | Wiederkehr, P. Siebrecht, T. Baumann, J. Biermann, D. |
description | Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments. |
doi_str_mv | 10.1007/s40436-018-0219-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037265546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037265546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOIzzAO4CrqtJ0-ZnKYN_MKALXYc0vZ2pdJqapKJv4GObTgdcuboH7nfOvRyELim5poSIm1CQgvGMUJmRnKpMnqBFmmXGSiVOkyaTprk4R6sQ2orkfNpQvkA_L67tY1aZADWOznXYw-AhQB9NbF0fcOM83rsaurbfYuv2QwdfMxl2ZoCATV9jP_ZujAc27gCHdj92Bz92DR68sxAOSfbI252JETz-bCs_37lAZ43pAqyOc4ne7u9e14_Z5vnhaX27ySyjPGZK1YLb0qq8YDUTjFpgpLJSgCSyFkWlJK2okaY0BRSNakpV5JITxkUNrFZsia7m3PTVxwgh6nc3-j6d1DlhIudlWfBE0Zmy3oXgodGDb_fGf2tK9NS5njvXqXM9da5l8uSzJyS234L_S_7f9AsySIbR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037265546</pqid></control><display><type>article</type><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><source>Springer Nature</source><creator>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</creator><creatorcontrib>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</creatorcontrib><description>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</description><identifier>ISSN: 2095-3127</identifier><identifier>EISSN: 2195-3597</identifier><identifier>DOI: 10.1007/s40436-018-0219-8</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Aerospace industry ; Automobile industry ; Automotive engineering ; Chatter ; Complexity ; Computer simulation ; Constructive solid geometry ; Control ; Engineering ; Five axis ; Machines ; Manufacturing ; Mechatronics ; Milling (machining) ; Modelling ; Nanotechnology and Microengineering ; Processes ; Robotics ; Simulation ; Surface properties ; Vibration</subject><ispartof>Advances in manufacturing, 2018-09, Vol.6 (3), p.301-307</ispartof><rights>Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Advances in Manufacturing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</citedby><cites>FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</cites><orcidid>0000-0001-8821-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wiederkehr, P.</creatorcontrib><creatorcontrib>Siebrecht, T.</creatorcontrib><creatorcontrib>Baumann, J.</creatorcontrib><creatorcontrib>Biermann, D.</creatorcontrib><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><title>Advances in manufacturing</title><addtitle>Adv. Manuf</addtitle><description>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</description><subject>Aerospace industry</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Chatter</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Constructive solid geometry</subject><subject>Control</subject><subject>Engineering</subject><subject>Five axis</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Milling (machining)</subject><subject>Modelling</subject><subject>Nanotechnology and Microengineering</subject><subject>Processes</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Surface properties</subject><subject>Vibration</subject><issn>2095-3127</issn><issn>2195-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOIzzAO4CrqtJ0-ZnKYN_MKALXYc0vZ2pdJqapKJv4GObTgdcuboH7nfOvRyELim5poSIm1CQgvGMUJmRnKpMnqBFmmXGSiVOkyaTprk4R6sQ2orkfNpQvkA_L67tY1aZADWOznXYw-AhQB9NbF0fcOM83rsaurbfYuv2QwdfMxl2ZoCATV9jP_ZujAc27gCHdj92Bz92DR68sxAOSfbI252JETz-bCs_37lAZ43pAqyOc4ne7u9e14_Z5vnhaX27ySyjPGZK1YLb0qq8YDUTjFpgpLJSgCSyFkWlJK2okaY0BRSNakpV5JITxkUNrFZsia7m3PTVxwgh6nc3-j6d1DlhIudlWfBE0Zmy3oXgodGDb_fGf2tK9NS5njvXqXM9da5l8uSzJyS234L_S_7f9AsySIbR</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Wiederkehr, P.</creator><creator>Siebrecht, T.</creator><creator>Baumann, J.</creator><creator>Biermann, D.</creator><general>Shanghai University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8821-7770</orcidid></search><sort><creationdate>20180901</creationdate><title>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</title><author>Wiederkehr, P. ; Siebrecht, T. ; Baumann, J. ; Biermann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace industry</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Chatter</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Constructive solid geometry</topic><topic>Control</topic><topic>Engineering</topic><topic>Five axis</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Milling (machining)</topic><topic>Modelling</topic><topic>Nanotechnology and Microengineering</topic><topic>Processes</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Surface properties</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiederkehr, P.</creatorcontrib><creatorcontrib>Siebrecht, T.</creatorcontrib><creatorcontrib>Baumann, J.</creatorcontrib><creatorcontrib>Biermann, D.</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Advances in manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiederkehr, P.</au><au>Siebrecht, T.</au><au>Baumann, J.</au><au>Biermann, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations</atitle><jtitle>Advances in manufacturing</jtitle><stitle>Adv. Manuf</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>6</volume><issue>3</issue><spage>301</spage><epage>307</epage><pages>301-307</pages><issn>2095-3127</issn><eissn>2195-3597</eissn><abstract>Geometric physically-based simulation systems can be used for analyzing and optimizing complex milling processes, for example in the automotive or aerospace industry, where the surface quality and process efficiency are limited due to chatter vibrations. Process simulations using tool models based on the constructive solid geometry (CSG) technique allow the analysis of process forces, tool deflections, and surface location errors resulting from five-axis machining operations. However, modeling complex tool shapes and effects like runout is difficult using CSG models due to the increasing complexity of the shape descriptions. Therefore, a point-based method for modeling the rotating tool considering its deflections is presented in this paper. With this method, tools with complex shapes and runout can be simulated in an efficient and flexible way. The new modeling approach is applied to exemplary milling processes and the simulation results are validated based on machining experiments.</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s40436-018-0219-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8821-7770</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-3127 |
ispartof | Advances in manufacturing, 2018-09, Vol.6 (3), p.301-307 |
issn | 2095-3127 2195-3597 |
language | eng |
recordid | cdi_proquest_journals_2037265546 |
source | Springer Nature |
subjects | Aerospace industry Automobile industry Automotive engineering Chatter Complexity Computer simulation Constructive solid geometry Control Engineering Five axis Machines Manufacturing Mechatronics Milling (machining) Modelling Nanotechnology and Microengineering Processes Robotics Simulation Surface properties Vibration |
title | Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point-based%20tool%20representations%20for%20modeling%20complex%20tool%20shapes%20and%20runout%20for%20the%20simulation%20of%20process%20forces%20and%20chatter%20vibrations&rft.jtitle=Advances%20in%20manufacturing&rft.au=Wiederkehr,%20P.&rft.date=2018-09-01&rft.volume=6&rft.issue=3&rft.spage=301&rft.epage=307&rft.pages=301-307&rft.issn=2095-3127&rft.eissn=2195-3597&rft_id=info:doi/10.1007/s40436-018-0219-8&rft_dat=%3Cproquest_cross%3E2037265546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-99d76c5c9243d3731ce30bc87e808d74b981b1a8a5a4e4f9f5942860367de3d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2037265546&rft_id=info:pmid/&rfr_iscdi=true |