Loading…
Artificial intelligence techniques for information security risk assessment
In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic te...
Saved in:
Published in: | Revista IEEE América Latina 2018-03, Vol.16 (3), p.897-901 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | eng ; spa |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3 |
---|---|
cites | |
container_end_page | 901 |
container_issue | 3 |
container_start_page | 897 |
container_title | Revista IEEE América Latina |
container_volume | 16 |
creator | Azan Basallo, Yasser Estrada Senti, Vivian Martinez Sanchez, Natalia |
description | In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR. |
doi_str_mv | 10.1109/TLA.2018.8358671 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038411704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8358671</ieee_id><sourcerecordid>2038411704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC562T3Ww2eyzFLyx4qecQJhNN3e7WJD3035tSFS8zA-87Xw9j1xxmnEN3t1rOZxVwNVN1o2TLT9iEN0KV0HXV6b_6nF3EuAaolVT1hL3MQ_LOozd94YdEfe_faUAqEuHH4L92FAs3hqzluDHJj0MRCXfBp30RfPwsTIwU44aGdMnOnOkjXf3kKXt7uF8tnsrl6-PzYr4ssap4KlVHHREaJKpQysYitI5s2ykrFG9AconCkbCiBbKWOCjXCqukwdoKpHrKbo9zt2E8HJj0etyFIa_UVf5LcN6CyC44ujCMMQZyehv8xoS95qAPyHRGpg_I9A-y3HJzbPFE9Gf_Vb8BHKdpqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038411704</pqid></control><display><type>article</type><title>Artificial intelligence techniques for information security risk assessment</title><source>IEEE Xplore (Online service)</source><creator>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</creator><creatorcontrib>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</creatorcontrib><description>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2018.8358671</identifier><language>eng ; spa</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial intelligence ; Audits ; Computer security ; Cybersecurity ; Data base management systems ; Fuzzy logic ; IEEE transactions ; Monitoring ; risk ; Risk assessment ; Silicon ; XML</subject><ispartof>Revista IEEE América Latina, 2018-03, Vol.16 (3), p.897-901</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8358671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Azan Basallo, Yasser</creatorcontrib><creatorcontrib>Estrada Senti, Vivian</creatorcontrib><creatorcontrib>Martinez Sanchez, Natalia</creatorcontrib><title>Artificial intelligence techniques for information security risk assessment</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</description><subject>Artificial intelligence</subject><subject>Audits</subject><subject>Computer security</subject><subject>Cybersecurity</subject><subject>Data base management systems</subject><subject>Fuzzy logic</subject><subject>IEEE transactions</subject><subject>Monitoring</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Silicon</subject><subject>XML</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3wcuC562T3Ww2eyzFLyx4qecQJhNN3e7WJD3035tSFS8zA-87Xw9j1xxmnEN3t1rOZxVwNVN1o2TLT9iEN0KV0HXV6b_6nF3EuAaolVT1hL3MQ_LOozd94YdEfe_faUAqEuHH4L92FAs3hqzluDHJj0MRCXfBp30RfPwsTIwU44aGdMnOnOkjXf3kKXt7uF8tnsrl6-PzYr4ssap4KlVHHREaJKpQysYitI5s2ykrFG9AconCkbCiBbKWOCjXCqukwdoKpHrKbo9zt2E8HJj0etyFIa_UVf5LcN6CyC44ujCMMQZyehv8xoS95qAPyHRGpg_I9A-y3HJzbPFE9Gf_Vb8BHKdpqw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Azan Basallo, Yasser</creator><creator>Estrada Senti, Vivian</creator><creator>Martinez Sanchez, Natalia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180301</creationdate><title>Artificial intelligence techniques for information security risk assessment</title><author>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Audits</topic><topic>Computer security</topic><topic>Cybersecurity</topic><topic>Data base management systems</topic><topic>Fuzzy logic</topic><topic>IEEE transactions</topic><topic>Monitoring</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Silicon</topic><topic>XML</topic><toplevel>online_resources</toplevel><creatorcontrib>Azan Basallo, Yasser</creatorcontrib><creatorcontrib>Estrada Senti, Vivian</creatorcontrib><creatorcontrib>Martinez Sanchez, Natalia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azan Basallo, Yasser</au><au>Estrada Senti, Vivian</au><au>Martinez Sanchez, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence techniques for information security risk assessment</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>897</spage><epage>901</epage><pages>897-901</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2018.8358671</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2018-03, Vol.16 (3), p.897-901 |
issn | 1548-0992 1548-0992 |
language | eng ; spa |
recordid | cdi_proquest_journals_2038411704 |
source | IEEE Xplore (Online service) |
subjects | Artificial intelligence Audits Computer security Cybersecurity Data base management systems Fuzzy logic IEEE transactions Monitoring risk Risk assessment Silicon XML |
title | Artificial intelligence techniques for information security risk assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20techniques%20for%20information%20security%20risk%20assessment&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Azan%20Basallo,%20Yasser&rft.date=2018-03-01&rft.volume=16&rft.issue=3&rft.spage=897&rft.epage=901&rft.pages=897-901&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2018.8358671&rft_dat=%3Cproquest_cross%3E2038411704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038411704&rft_id=info:pmid/&rft_ieee_id=8358671&rfr_iscdi=true |