Loading…

Artificial intelligence techniques for information security risk assessment

In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic te...

Full description

Saved in:
Bibliographic Details
Published in:Revista IEEE América Latina 2018-03, Vol.16 (3), p.897-901
Main Authors: Azan Basallo, Yasser, Estrada Senti, Vivian, Martinez Sanchez, Natalia
Format: Article
Language:eng ; spa
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3
cites
container_end_page 901
container_issue 3
container_start_page 897
container_title Revista IEEE América Latina
container_volume 16
creator Azan Basallo, Yasser
Estrada Senti, Vivian
Martinez Sanchez, Natalia
description In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.
doi_str_mv 10.1109/TLA.2018.8358671
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038411704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8358671</ieee_id><sourcerecordid>2038411704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC562T3Ww2eyzFLyx4qecQJhNN3e7WJD3035tSFS8zA-87Xw9j1xxmnEN3t1rOZxVwNVN1o2TLT9iEN0KV0HXV6b_6nF3EuAaolVT1hL3MQ_LOozd94YdEfe_faUAqEuHH4L92FAs3hqzluDHJj0MRCXfBp30RfPwsTIwU44aGdMnOnOkjXf3kKXt7uF8tnsrl6-PzYr4ssap4KlVHHREaJKpQysYitI5s2ykrFG9AconCkbCiBbKWOCjXCqukwdoKpHrKbo9zt2E8HJj0etyFIa_UVf5LcN6CyC44ujCMMQZyehv8xoS95qAPyHRGpg_I9A-y3HJzbPFE9Gf_Vb8BHKdpqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038411704</pqid></control><display><type>article</type><title>Artificial intelligence techniques for information security risk assessment</title><source>IEEE Xplore (Online service)</source><creator>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</creator><creatorcontrib>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</creatorcontrib><description>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2018.8358671</identifier><language>eng ; spa</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial intelligence ; Audits ; Computer security ; Cybersecurity ; Data base management systems ; Fuzzy logic ; IEEE transactions ; Monitoring ; risk ; Risk assessment ; Silicon ; XML</subject><ispartof>Revista IEEE América Latina, 2018-03, Vol.16 (3), p.897-901</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8358671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Azan Basallo, Yasser</creatorcontrib><creatorcontrib>Estrada Senti, Vivian</creatorcontrib><creatorcontrib>Martinez Sanchez, Natalia</creatorcontrib><title>Artificial intelligence techniques for information security risk assessment</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</description><subject>Artificial intelligence</subject><subject>Audits</subject><subject>Computer security</subject><subject>Cybersecurity</subject><subject>Data base management systems</subject><subject>Fuzzy logic</subject><subject>IEEE transactions</subject><subject>Monitoring</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Silicon</subject><subject>XML</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3wcuC562T3Ww2eyzFLyx4qecQJhNN3e7WJD3035tSFS8zA-87Xw9j1xxmnEN3t1rOZxVwNVN1o2TLT9iEN0KV0HXV6b_6nF3EuAaolVT1hL3MQ_LOozd94YdEfe_faUAqEuHH4L92FAs3hqzluDHJj0MRCXfBp30RfPwsTIwU44aGdMnOnOkjXf3kKXt7uF8tnsrl6-PzYr4ssap4KlVHHREaJKpQysYitI5s2ykrFG9AconCkbCiBbKWOCjXCqukwdoKpHrKbo9zt2E8HJj0etyFIa_UVf5LcN6CyC44ujCMMQZyehv8xoS95qAPyHRGpg_I9A-y3HJzbPFE9Gf_Vb8BHKdpqw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Azan Basallo, Yasser</creator><creator>Estrada Senti, Vivian</creator><creator>Martinez Sanchez, Natalia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180301</creationdate><title>Artificial intelligence techniques for information security risk assessment</title><author>Azan Basallo, Yasser ; Estrada Senti, Vivian ; Martinez Sanchez, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Audits</topic><topic>Computer security</topic><topic>Cybersecurity</topic><topic>Data base management systems</topic><topic>Fuzzy logic</topic><topic>IEEE transactions</topic><topic>Monitoring</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Silicon</topic><topic>XML</topic><toplevel>online_resources</toplevel><creatorcontrib>Azan Basallo, Yasser</creatorcontrib><creatorcontrib>Estrada Senti, Vivian</creatorcontrib><creatorcontrib>Martinez Sanchez, Natalia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azan Basallo, Yasser</au><au>Estrada Senti, Vivian</au><au>Martinez Sanchez, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence techniques for information security risk assessment</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>897</spage><epage>901</epage><pages>897-901</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In computer security audits, information security risk assessments (ISR) are performed to computer systems, within it to database management systems (DBMS), often using qualitative methodologies. In these methodologies, the evaluation of the ISR is classified according to its impact in linguistic terms such as: High, Medium or Low, so that ambiguities can be generated in the evaluation result. Security checklists are also used to review the configurations of the DBMS. They have a strong dependence on the presence of the expert auditor in DBMS for this analysis. In order to facilitate the work of the auditors, a model based on knowledge and fuzzy logic was developed for the evaluation of the ISR in the DBMS. In this way, the experience in previous audits of this type is useful and improves the results in the evaluation of the ISR.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2018.8358671</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2018-03, Vol.16 (3), p.897-901
issn 1548-0992
1548-0992
language eng ; spa
recordid cdi_proquest_journals_2038411704
source IEEE Xplore (Online service)
subjects Artificial intelligence
Audits
Computer security
Cybersecurity
Data base management systems
Fuzzy logic
IEEE transactions
Monitoring
risk
Risk assessment
Silicon
XML
title Artificial intelligence techniques for information security risk assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20techniques%20for%20information%20security%20risk%20assessment&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Azan%20Basallo,%20Yasser&rft.date=2018-03-01&rft.volume=16&rft.issue=3&rft.spage=897&rft.epage=901&rft.pages=897-901&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2018.8358671&rft_dat=%3Cproquest_cross%3E2038411704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-89e9eecacee2c665dc07fed798d48150616c4fe4d470edde108f74d86ac3d4ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038411704&rft_id=info:pmid/&rft_ieee_id=8358671&rfr_iscdi=true