Loading…
The European Infrasound Bulletin
The European Infrasound Bulletin highlights infrasound activity produced mostly by anthropogenic sources, recorded all over Europe and collected in the course of the ARISE and ARISE2 projects (Atmospheric dynamics Research InfraStructure in Europe). Data includes high-frequency (> 0.7 Hz) infraso...
Saved in:
Published in: | Pure and applied geophysics 2018-10, Vol.175 (10), p.3619-3638 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The European Infrasound Bulletin highlights infrasound activity produced mostly by anthropogenic sources, recorded all over Europe and collected in the course of the ARISE and ARISE2 projects (Atmospheric dynamics Research InfraStructure in Europe). Data includes high-frequency (> 0.7 Hz) infrasound detections at 24 European infrasound arrays from nine different national institutions complemented with infrasound stations of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Data were acquired during 16 years of operation (from 2000 to 2015) and processed to identify and locate ∼ 48,000 infrasound events within Europe. The source locations of these events were derived by combining at least two corresponding station detections per event. Comparisons with ground-truth sources, e.g., Scandinavian mining activity, are provided as well as comparisons with the CTBT Late Event Bulletin (LEB). Relocation is performed using ray-tracing methods to estimate celerity and back-azimuth corrections for source location based on meteorological wind and temperature values for each event derived from European Centre for Medium-range Weather Forecast (ECMWF) data. This study focuses on the analysis of repeating, man-made infrasound events (e.g., mining blasts and supersonic flights) and on the seasonal, weekly and diurnal variation of the infrasonic activity of sources in Europe. Drawing comparisons to previous studies shows that improvements in terms of detection, association and location are made within this study due to increasing the station density and thus the number of events and determined source regions. This improves the capability of the infrasound station network in Europe to more comprehensively estimate the activity of anthropogenic infrasound sources in Europe. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-018-1900-3 |