Loading…

Inertial focusing of finite-size particles in microchannels

At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2018-04, Vol.840, p.613-630
Main Authors: Asmolov, Evgeny S., Dubov, Alexander L., Nizkaya, Tatiana V., Harting, Jens, Vinogradova, Olga I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3
cites cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3
container_end_page 630
container_issue
container_start_page 613
container_title Journal of fluid mechanics
container_volume 840
creator Asmolov, Evgeny S.
Dubov, Alexander L.
Nizkaya, Tatiana V.
Harting, Jens
Vinogradova, Olga I.
description At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$ , to finite-size particles in a channel flow at $Re\leqslant 20$ . Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$ .
doi_str_mv 10.1017/jfm.2018.95
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038580778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_95</cupid><sourcerecordid>2038580778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9eTUJrqT4KBTc6DqkmaSmzGRqMl3orzfSghtXd3E-zrl8CF0TmBEg8m4b-hkFomZanKAJ4XON5ZyLUzQBoBQTQuEcXZSyBSAMtJyg-2XyeYy2a8Lg9iWmTTOEJsQUR49L_PbNztbcdb40MTV9dHlwHzYl35VLdBZsV_zV8U7R-9Pj2-IFr16fl4uHFXZU6xErIdaEuDawQEkQnlEuNVMUWm7FWmgIBBTjrG2tUzowGuhcMh64FLzGLZuim0PvLg-fe19Gsx32OdVJQ4EpoUBKVanbA1U_LCX7YHY59jZ_GQLm146pdsyvHaNFpfGRtv06x3bj_0r_438Aqadllg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038580778</pqid></control><display><type>article</type><title>Inertial focusing of finite-size particles in microchannels</title><source>Cambridge Journals Online</source><creator>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</creator><creatorcontrib>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</creatorcontrib><description>At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$ , to finite-size particles in a channel flow at $Re\leqslant 20$ . Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$ .</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.95</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channel flow ; Computer simulation ; Equilibrium ; Gravity ; JFM Papers ; Laminar flow ; Lift ; Microchannels ; Migration ; Particle size ; Reynolds number ; Slip velocity ; Streamlines ; Velocity</subject><ispartof>Journal of fluid mechanics, 2018-04, Vol.840, p.613-630</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</citedby><cites>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</cites><orcidid>0000-0003-0666-1646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018000952/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,72715</link.rule.ids></links><search><creatorcontrib>Asmolov, Evgeny S.</creatorcontrib><creatorcontrib>Dubov, Alexander L.</creatorcontrib><creatorcontrib>Nizkaya, Tatiana V.</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Vinogradova, Olga I.</creatorcontrib><title>Inertial focusing of finite-size particles in microchannels</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$ , to finite-size particles in a channel flow at $Re\leqslant 20$ . Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$ .</description><subject>Channel flow</subject><subject>Computer simulation</subject><subject>Equilibrium</subject><subject>Gravity</subject><subject>JFM Papers</subject><subject>Laminar flow</subject><subject>Lift</subject><subject>Microchannels</subject><subject>Migration</subject><subject>Particle size</subject><subject>Reynolds number</subject><subject>Slip velocity</subject><subject>Streamlines</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9eTUJrqT4KBTc6DqkmaSmzGRqMl3orzfSghtXd3E-zrl8CF0TmBEg8m4b-hkFomZanKAJ4XON5ZyLUzQBoBQTQuEcXZSyBSAMtJyg-2XyeYy2a8Lg9iWmTTOEJsQUR49L_PbNztbcdb40MTV9dHlwHzYl35VLdBZsV_zV8U7R-9Pj2-IFr16fl4uHFXZU6xErIdaEuDawQEkQnlEuNVMUWm7FWmgIBBTjrG2tUzowGuhcMh64FLzGLZuim0PvLg-fe19Gsx32OdVJQ4EpoUBKVanbA1U_LCX7YHY59jZ_GQLm146pdsyvHaNFpfGRtv06x3bj_0r_438Aqadllg</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Asmolov, Evgeny S.</creator><creator>Dubov, Alexander L.</creator><creator>Nizkaya, Tatiana V.</creator><creator>Harting, Jens</creator><creator>Vinogradova, Olga I.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0666-1646</orcidid></search><sort><creationdate>20180410</creationdate><title>Inertial focusing of finite-size particles in microchannels</title><author>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel flow</topic><topic>Computer simulation</topic><topic>Equilibrium</topic><topic>Gravity</topic><topic>JFM Papers</topic><topic>Laminar flow</topic><topic>Lift</topic><topic>Microchannels</topic><topic>Migration</topic><topic>Particle size</topic><topic>Reynolds number</topic><topic>Slip velocity</topic><topic>Streamlines</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asmolov, Evgeny S.</creatorcontrib><creatorcontrib>Dubov, Alexander L.</creatorcontrib><creatorcontrib>Nizkaya, Tatiana V.</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Vinogradova, Olga I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asmolov, Evgeny S.</au><au>Dubov, Alexander L.</au><au>Nizkaya, Tatiana V.</au><au>Harting, Jens</au><au>Vinogradova, Olga I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial focusing of finite-size particles in microchannels</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>840</volume><spage>613</spage><epage>630</epage><pages>613-630</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$ , to finite-size particles in a channel flow at $Re\leqslant 20$ . Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.95</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0666-1646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2018-04, Vol.840, p.613-630
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2038580778
source Cambridge Journals Online
subjects Channel flow
Computer simulation
Equilibrium
Gravity
JFM Papers
Laminar flow
Lift
Microchannels
Migration
Particle size
Reynolds number
Slip velocity
Streamlines
Velocity
title Inertial focusing of finite-size particles in microchannels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20focusing%20of%20finite-size%20particles%20in%20microchannels&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Asmolov,%20Evgeny%20S.&rft.date=2018-04-10&rft.volume=840&rft.spage=613&rft.epage=630&rft.pages=613-630&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.95&rft_dat=%3Cproquest_cross%3E2038580778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038580778&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_95&rfr_iscdi=true