Loading…
Inertial focusing of finite-size particles in microchannels
At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that...
Saved in:
Published in: | Journal of fluid mechanics 2018-04, Vol.840, p.613-630 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3 |
container_end_page | 630 |
container_issue | |
container_start_page | 613 |
container_title | Journal of fluid mechanics |
container_volume | 840 |
creator | Asmolov, Evgeny S. Dubov, Alexander L. Nizkaya, Tatiana V. Harting, Jens Vinogradova, Olga I. |
description | At finite Reynolds numbers,
$Re$
, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and
$Re\ll 1$
, to finite-size particles in a channel flow at
$Re\leqslant 20$
. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate
$Re$
. |
doi_str_mv | 10.1017/jfm.2018.95 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038580778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_95</cupid><sourcerecordid>2038580778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9eTUJrqT4KBTc6DqkmaSmzGRqMl3orzfSghtXd3E-zrl8CF0TmBEg8m4b-hkFomZanKAJ4XON5ZyLUzQBoBQTQuEcXZSyBSAMtJyg-2XyeYy2a8Lg9iWmTTOEJsQUR49L_PbNztbcdb40MTV9dHlwHzYl35VLdBZsV_zV8U7R-9Pj2-IFr16fl4uHFXZU6xErIdaEuDawQEkQnlEuNVMUWm7FWmgIBBTjrG2tUzowGuhcMh64FLzGLZuim0PvLg-fe19Gsx32OdVJQ4EpoUBKVanbA1U_LCX7YHY59jZ_GQLm146pdsyvHaNFpfGRtv06x3bj_0r_438Aqadllg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038580778</pqid></control><display><type>article</type><title>Inertial focusing of finite-size particles in microchannels</title><source>Cambridge Journals Online</source><creator>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</creator><creatorcontrib>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</creatorcontrib><description>At finite Reynolds numbers,
$Re$
, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and
$Re\ll 1$
, to finite-size particles in a channel flow at
$Re\leqslant 20$
. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate
$Re$
.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.95</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channel flow ; Computer simulation ; Equilibrium ; Gravity ; JFM Papers ; Laminar flow ; Lift ; Microchannels ; Migration ; Particle size ; Reynolds number ; Slip velocity ; Streamlines ; Velocity</subject><ispartof>Journal of fluid mechanics, 2018-04, Vol.840, p.613-630</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</citedby><cites>FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</cites><orcidid>0000-0003-0666-1646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018000952/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,72715</link.rule.ids></links><search><creatorcontrib>Asmolov, Evgeny S.</creatorcontrib><creatorcontrib>Dubov, Alexander L.</creatorcontrib><creatorcontrib>Nizkaya, Tatiana V.</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Vinogradova, Olga I.</creatorcontrib><title>Inertial focusing of finite-size particles in microchannels</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>At finite Reynolds numbers,
$Re$
, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and
$Re\ll 1$
, to finite-size particles in a channel flow at
$Re\leqslant 20$
. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate
$Re$
.</description><subject>Channel flow</subject><subject>Computer simulation</subject><subject>Equilibrium</subject><subject>Gravity</subject><subject>JFM Papers</subject><subject>Laminar flow</subject><subject>Lift</subject><subject>Microchannels</subject><subject>Migration</subject><subject>Particle size</subject><subject>Reynolds number</subject><subject>Slip velocity</subject><subject>Streamlines</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKsr_8CAS0m9eTUJrqT4KBTc6DqkmaSmzGRqMl3orzfSghtXd3E-zrl8CF0TmBEg8m4b-hkFomZanKAJ4XON5ZyLUzQBoBQTQuEcXZSyBSAMtJyg-2XyeYy2a8Lg9iWmTTOEJsQUR49L_PbNztbcdb40MTV9dHlwHzYl35VLdBZsV_zV8U7R-9Pj2-IFr16fl4uHFXZU6xErIdaEuDawQEkQnlEuNVMUWm7FWmgIBBTjrG2tUzowGuhcMh64FLzGLZuim0PvLg-fe19Gsx32OdVJQ4EpoUBKVanbA1U_LCX7YHY59jZ_GQLm146pdsyvHaNFpfGRtv06x3bj_0r_438Aqadllg</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Asmolov, Evgeny S.</creator><creator>Dubov, Alexander L.</creator><creator>Nizkaya, Tatiana V.</creator><creator>Harting, Jens</creator><creator>Vinogradova, Olga I.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0666-1646</orcidid></search><sort><creationdate>20180410</creationdate><title>Inertial focusing of finite-size particles in microchannels</title><author>Asmolov, Evgeny S. ; Dubov, Alexander L. ; Nizkaya, Tatiana V. ; Harting, Jens ; Vinogradova, Olga I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel flow</topic><topic>Computer simulation</topic><topic>Equilibrium</topic><topic>Gravity</topic><topic>JFM Papers</topic><topic>Laminar flow</topic><topic>Lift</topic><topic>Microchannels</topic><topic>Migration</topic><topic>Particle size</topic><topic>Reynolds number</topic><topic>Slip velocity</topic><topic>Streamlines</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asmolov, Evgeny S.</creatorcontrib><creatorcontrib>Dubov, Alexander L.</creatorcontrib><creatorcontrib>Nizkaya, Tatiana V.</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><creatorcontrib>Vinogradova, Olga I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asmolov, Evgeny S.</au><au>Dubov, Alexander L.</au><au>Nizkaya, Tatiana V.</au><au>Harting, Jens</au><au>Vinogradova, Olga I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial focusing of finite-size particles in microchannels</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>840</volume><spage>613</spage><epage>630</epage><pages>613-630</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>At finite Reynolds numbers,
$Re$
, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and
$Re\ll 1$
, to finite-size particles in a channel flow at
$Re\leqslant 20$
. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate
$Re$
.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.95</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0666-1646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2018-04, Vol.840, p.613-630 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2038580778 |
source | Cambridge Journals Online |
subjects | Channel flow Computer simulation Equilibrium Gravity JFM Papers Laminar flow Lift Microchannels Migration Particle size Reynolds number Slip velocity Streamlines Velocity |
title | Inertial focusing of finite-size particles in microchannels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20focusing%20of%20finite-size%20particles%20in%20microchannels&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Asmolov,%20Evgeny%20S.&rft.date=2018-04-10&rft.volume=840&rft.spage=613&rft.epage=630&rft.pages=613-630&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.95&rft_dat=%3Cproquest_cross%3E2038580778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-855b11cdf3f21f5e324793820d4a5b590f108343ddac89f32f26734f4754b59d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038580778&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_95&rfr_iscdi=true |