Loading…

Thermal atomisation of a liquid drop after impact onto a hot substrate

This experimental study is focused on the mechanisms of thermal atomisation of a drop impacting onto a hot substrate. This phenomenon is characterised by the wetting and dewetting of the substrate, caused not by the rim dynamics, but induced by thermal effects. These thermal effects lead to the lame...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2018-05, Vol.842, p.87-101
Main Authors: Roisman, I. V., Breitenbach, J., Tropea, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This experimental study is focused on the mechanisms of thermal atomisation of a drop impacting onto a hot substrate. This phenomenon is characterised by the wetting and dewetting of the substrate, caused not by the rim dynamics, but induced by thermal effects. These thermal effects lead to the lamella evaporation, levitation and disintegration, generation of a vertical spray of fine droplets and consequently, drop breakup. A typical contact time of the drop before complete detachment is theoretically estimated. This estimation agrees very well with the experiments. It is shown that the Weber number, often used for describing splashing drops, is not a relevant parameter for thermal atomisation. Finally, a regime map is plotted, using a combination of the dimensionless contact time and the dimensionless heat flux at the substrate.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.123