Loading…
From Cyclic Sums to Projective Planes
Zarnowski presents a property of ordered n-tuples that leads to a variety of intriguing problems and important mathematical ideas. He begins by considering the ordered triple of numbers (1, 2, 4), and treat the numbers as connected cyclically, like beads on a closed necklace. The numbers that can be...
Saved in:
Published in: | The College mathematics journal 2007-09, Vol.38 (4), p.304-308 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 308 |
container_issue | 4 |
container_start_page | 304 |
container_title | The College mathematics journal |
container_volume | 38 |
creator | Zarnowski, Roger |
description | Zarnowski presents a property of ordered n-tuples that leads to a variety of intriguing problems and important mathematical ideas. He begins by considering the ordered triple of numbers (1, 2, 4), and treat the numbers as connected cyclically, like beads on a closed necklace. The numbers that can be obtained by summing adjacent terms of this "necklace" in groups of lengths 1, 2, and 3 are called cyclic sums. |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_203903168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27646511</jstor_id><sourcerecordid>27646511</sourcerecordid><originalsourceid>FETCH-LOGICAL-j498-5c73fdbab9416101344d9ddbbbb3b724bf54401c5a32638c2b55924c7cd34a53</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMoWKc_QQiCj4Uk9yZpHqU4HQwczPeSpC00tMtMWmH_3sL8Xr6Xwzk3pOAGeMkB1S0pmEZVVoDinjzkHBhjvNKqIK_bFCdaX_w4eHpcpkznSA8phs7Pw29HD6M9dfmR3PV2zN3T_2_Icfv-XX-W-6-PXf22LwOaqpReQ9866wxyxdlaxta0rVsHTgt0vURk3EsLQkHlhZPSCPTat4BWwoa8XK3nFH-WLs9NiEs6rcFGMDAMuKpW6PkKhTzH1JzTMNl0aYRWqCTn8Ad760Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203903168</pqid></control><display><type>article</type><title>From Cyclic Sums to Projective Planes</title><source>Social Science Premium Collection</source><source>Taylor and Francis Science and Technology Collection</source><source>Education Collection</source><creator>Zarnowski, Roger</creator><creatorcontrib>Zarnowski, Roger</creatorcontrib><description>Zarnowski presents a property of ordered n-tuples that leads to a variety of intriguing problems and important mathematical ideas. He begins by considering the ordered triple of numbers (1, 2, 4), and treat the numbers as connected cyclically, like beads on a closed necklace. The numbers that can be obtained by summing adjacent terms of this "necklace" in groups of lengths 1, 2, and 3 are called cyclic sums.</description><identifier>ISSN: 0746-8342</identifier><identifier>EISSN: 1931-1346</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Algorithms ; Combinatorics ; Design efficiency ; Geometric planes ; Integers ; Mathematical problems ; Mathematics ; Project design ; Property lines ; Student Research Projects ; Theorems</subject><ispartof>The College mathematics journal, 2007-09, Vol.38 (4), p.304-308</ispartof><rights>Copyright 2007 Mathematical Association of America</rights><rights>Copyright Mathematical Association Of America Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203903168/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203903168?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21358,21374,33590,33856,43712,43859,73968,74144</link.rule.ids></links><search><creatorcontrib>Zarnowski, Roger</creatorcontrib><title>From Cyclic Sums to Projective Planes</title><title>The College mathematics journal</title><description>Zarnowski presents a property of ordered n-tuples that leads to a variety of intriguing problems and important mathematical ideas. He begins by considering the ordered triple of numbers (1, 2, 4), and treat the numbers as connected cyclically, like beads on a closed necklace. The numbers that can be obtained by summing adjacent terms of this "necklace" in groups of lengths 1, 2, and 3 are called cyclic sums.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Design efficiency</subject><subject>Geometric planes</subject><subject>Integers</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Project design</subject><subject>Property lines</subject><subject>Student Research Projects</subject><subject>Theorems</subject><issn>0746-8342</issn><issn>1931-1346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0P</sourceid><recordid>eNotjVFLwzAURoMoWKc_QQiCj4Uk9yZpHqU4HQwczPeSpC00tMtMWmH_3sL8Xr6Xwzk3pOAGeMkB1S0pmEZVVoDinjzkHBhjvNKqIK_bFCdaX_w4eHpcpkznSA8phs7Pw29HD6M9dfmR3PV2zN3T_2_Icfv-XX-W-6-PXf22LwOaqpReQ9866wxyxdlaxta0rVsHTgt0vURk3EsLQkHlhZPSCPTat4BWwoa8XK3nFH-WLs9NiEs6rcFGMDAMuKpW6PkKhTzH1JzTMNl0aYRWqCTn8Ad760Qw</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Zarnowski, Roger</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070901</creationdate><title>From Cyclic Sums to Projective Planes</title><author>Zarnowski, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j498-5c73fdbab9416101344d9ddbbbb3b724bf54401c5a32638c2b55924c7cd34a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Design efficiency</topic><topic>Geometric planes</topic><topic>Integers</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Project design</topic><topic>Property lines</topic><topic>Student Research Projects</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarnowski, Roger</creatorcontrib><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The College mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarnowski, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Cyclic Sums to Projective Planes</atitle><jtitle>The College mathematics journal</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>38</volume><issue>4</issue><spage>304</spage><epage>308</epage><pages>304-308</pages><issn>0746-8342</issn><eissn>1931-1346</eissn><abstract>Zarnowski presents a property of ordered n-tuples that leads to a variety of intriguing problems and important mathematical ideas. He begins by considering the ordered triple of numbers (1, 2, 4), and treat the numbers as connected cyclically, like beads on a closed necklace. The numbers that can be obtained by summing adjacent terms of this "necklace" in groups of lengths 1, 2, and 3 are called cyclic sums.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0746-8342 |
ispartof | The College mathematics journal, 2007-09, Vol.38 (4), p.304-308 |
issn | 0746-8342 1931-1346 |
language | eng |
recordid | cdi_proquest_journals_203903168 |
source | Social Science Premium Collection; Taylor and Francis Science and Technology Collection; Education Collection |
subjects | Algorithms Combinatorics Design efficiency Geometric planes Integers Mathematical problems Mathematics Project design Property lines Student Research Projects Theorems |
title | From Cyclic Sums to Projective Planes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Cyclic%20Sums%20to%20Projective%20Planes&rft.jtitle=The%20College%20mathematics%20journal&rft.au=Zarnowski,%20Roger&rft.date=2007-09-01&rft.volume=38&rft.issue=4&rft.spage=304&rft.epage=308&rft.pages=304-308&rft.issn=0746-8342&rft.eissn=1931-1346&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E27646511%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j498-5c73fdbab9416101344d9ddbbbb3b724bf54401c5a32638c2b55924c7cd34a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203903168&rft_id=info:pmid/&rft_jstor_id=27646511&rfr_iscdi=true |