Loading…

An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity

In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the...

Full description

Saved in:
Bibliographic Details
Published in:Electrical engineering 2018-06, Vol.100 (2), p.389-399
Main Authors: Boy, Felix, Hetzler, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663
cites cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663
container_end_page 399
container_issue 2
container_start_page 389
container_title Electrical engineering
container_volume 100
creator Boy, Felix
Hetzler, Hartmut
description In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.
doi_str_mv 10.1007/s00202-017-0512-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2039943542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039943542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvHTDLLUnyB4Kb7kMlk2tQ2GZMU7d-boYIrVxfO63IOQrcE7gmAeEgAFGgFRFRQE1rJMzQjnBWES3GOZtByWYmWkkt0ldIWAFjd8hn6WHis03E_5pCdwXocY_h2e51d8DgMOG8s3uu1txM7OLvrsfY9HkI0NmHnsd1Zk6Mzeld0ZuN8gb9c3uAYcojYGmP9xLt8vEYXg94le_N752j19LhavlRv78-vy8VbZRhpctXKRlPaM9sNtNPa1ERwYzvbaDL0DbSy58xw2UHfESFZJ4gRgtZgzCCbpmFzdHeKLVU-DzZltQ2H6MtHRYG1LWc1p0VFTioTQ0rRDmqMpXc8KgJqmlSdJlVlUjVNqmTx0JMnFa1f2_iX_L_pBxQ4ev4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039943542</pqid></control><display><type>article</type><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><source>Springer Link</source><creator>Boy, Felix ; Hetzler, Hartmut</creator><creatorcontrib>Boy, Felix ; Hetzler, Hartmut</creatorcontrib><description>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-017-0512-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air gaps ; Approximation ; Asymptotic properties ; Asymptotic series ; Derivation ; Eccentricity ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Flux density ; Magnetic fields ; Magnetic flux ; Magnetism ; Original Paper ; Power Electronics ; Rotating machinery</subject><ispartof>Electrical engineering, 2018-06, Vol.100 (2), p.389-399</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</citedby><cites>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</cites><orcidid>0000-0002-0063-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Boy, Felix</creatorcontrib><creatorcontrib>Hetzler, Hartmut</creatorcontrib><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</description><subject>Air gaps</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>Derivation</subject><subject>Eccentricity</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Flux density</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Rotating machinery</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvHTDLLUnyB4Kb7kMlk2tQ2GZMU7d-boYIrVxfO63IOQrcE7gmAeEgAFGgFRFRQE1rJMzQjnBWES3GOZtByWYmWkkt0ldIWAFjd8hn6WHis03E_5pCdwXocY_h2e51d8DgMOG8s3uu1txM7OLvrsfY9HkI0NmHnsd1Zk6Mzeld0ZuN8gb9c3uAYcojYGmP9xLt8vEYXg94le_N752j19LhavlRv78-vy8VbZRhpctXKRlPaM9sNtNPa1ERwYzvbaDL0DbSy58xw2UHfESFZJ4gRgtZgzCCbpmFzdHeKLVU-DzZltQ2H6MtHRYG1LWc1p0VFTioTQ0rRDmqMpXc8KgJqmlSdJlVlUjVNqmTx0JMnFa1f2_iX_L_pBxQ4ev4</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Boy, Felix</creator><creator>Hetzler, Hartmut</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0063-9475</orcidid></search><sort><creationdate>20180601</creationdate><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><author>Boy, Felix ; Hetzler, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air gaps</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>Derivation</topic><topic>Eccentricity</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Flux density</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Rotating machinery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boy, Felix</creatorcontrib><creatorcontrib>Hetzler, Hartmut</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boy, Felix</au><au>Hetzler, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>100</volume><issue>2</issue><spage>389</spage><epage>399</epage><pages>389-399</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-017-0512-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0063-9475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2018-06, Vol.100 (2), p.389-399
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_2039943542
source Springer Link
subjects Air gaps
Approximation
Asymptotic properties
Asymptotic series
Derivation
Eccentricity
Economics and Management
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Flux density
Magnetic fields
Magnetic flux
Magnetism
Original Paper
Power Electronics
Rotating machinery
title An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20approximation%20of%20the%20magnetic%20field%20and%20forces%20in%20electrical%20machines%20with%20rotor%20eccentricity&rft.jtitle=Electrical%20engineering&rft.au=Boy,%20Felix&rft.date=2018-06-01&rft.volume=100&rft.issue=2&rft.spage=389&rft.epage=399&rft.pages=389-399&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-017-0512-8&rft_dat=%3Cproquest_cross%3E2039943542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039943542&rft_id=info:pmid/&rfr_iscdi=true