Loading…
An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity
In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the...
Saved in:
Published in: | Electrical engineering 2018-06, Vol.100 (2), p.389-399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663 |
container_end_page | 399 |
container_issue | 2 |
container_start_page | 389 |
container_title | Electrical engineering |
container_volume | 100 |
creator | Boy, Felix Hetzler, Hartmut |
description | In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification. |
doi_str_mv | 10.1007/s00202-017-0512-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2039943542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039943542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvHTDLLUnyB4Kb7kMlk2tQ2GZMU7d-boYIrVxfO63IOQrcE7gmAeEgAFGgFRFRQE1rJMzQjnBWES3GOZtByWYmWkkt0ldIWAFjd8hn6WHis03E_5pCdwXocY_h2e51d8DgMOG8s3uu1txM7OLvrsfY9HkI0NmHnsd1Zk6Mzeld0ZuN8gb9c3uAYcojYGmP9xLt8vEYXg94le_N752j19LhavlRv78-vy8VbZRhpctXKRlPaM9sNtNPa1ERwYzvbaDL0DbSy58xw2UHfESFZJ4gRgtZgzCCbpmFzdHeKLVU-DzZltQ2H6MtHRYG1LWc1p0VFTioTQ0rRDmqMpXc8KgJqmlSdJlVlUjVNqmTx0JMnFa1f2_iX_L_pBxQ4ev4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039943542</pqid></control><display><type>article</type><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><source>Springer Link</source><creator>Boy, Felix ; Hetzler, Hartmut</creator><creatorcontrib>Boy, Felix ; Hetzler, Hartmut</creatorcontrib><description>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-017-0512-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air gaps ; Approximation ; Asymptotic properties ; Asymptotic series ; Derivation ; Eccentricity ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Flux density ; Magnetic fields ; Magnetic flux ; Magnetism ; Original Paper ; Power Electronics ; Rotating machinery</subject><ispartof>Electrical engineering, 2018-06, Vol.100 (2), p.389-399</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</citedby><cites>FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</cites><orcidid>0000-0002-0063-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Boy, Felix</creatorcontrib><creatorcontrib>Hetzler, Hartmut</creatorcontrib><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</description><subject>Air gaps</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>Derivation</subject><subject>Eccentricity</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Flux density</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Rotating machinery</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZvHTDLLUnyB4Kb7kMlk2tQ2GZMU7d-boYIrVxfO63IOQrcE7gmAeEgAFGgFRFRQE1rJMzQjnBWES3GOZtByWYmWkkt0ldIWAFjd8hn6WHis03E_5pCdwXocY_h2e51d8DgMOG8s3uu1txM7OLvrsfY9HkI0NmHnsd1Zk6Mzeld0ZuN8gb9c3uAYcojYGmP9xLt8vEYXg94le_N752j19LhavlRv78-vy8VbZRhpctXKRlPaM9sNtNPa1ERwYzvbaDL0DbSy58xw2UHfESFZJ4gRgtZgzCCbpmFzdHeKLVU-DzZltQ2H6MtHRYG1LWc1p0VFTioTQ0rRDmqMpXc8KgJqmlSdJlVlUjVNqmTx0JMnFa1f2_iX_L_pBxQ4ev4</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Boy, Felix</creator><creator>Hetzler, Hartmut</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0063-9475</orcidid></search><sort><creationdate>20180601</creationdate><title>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</title><author>Boy, Felix ; Hetzler, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air gaps</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>Derivation</topic><topic>Eccentricity</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Flux density</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Rotating machinery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boy, Felix</creatorcontrib><creatorcontrib>Hetzler, Hartmut</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boy, Felix</au><au>Hetzler, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>100</volume><issue>2</issue><spage>389</spage><epage>399</epage><pages>389-399</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-017-0512-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0063-9475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2018-06, Vol.100 (2), p.389-399 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_2039943542 |
source | Springer Link |
subjects | Air gaps Approximation Asymptotic properties Asymptotic series Derivation Eccentricity Economics and Management Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Flux density Magnetic fields Magnetic flux Magnetism Original Paper Power Electronics Rotating machinery |
title | An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20approximation%20of%20the%20magnetic%20field%20and%20forces%20in%20electrical%20machines%20with%20rotor%20eccentricity&rft.jtitle=Electrical%20engineering&rft.au=Boy,%20Felix&rft.date=2018-06-01&rft.volume=100&rft.issue=2&rft.spage=389&rft.epage=399&rft.pages=389-399&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-017-0512-8&rft_dat=%3Cproquest_cross%3E2039943542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-986a22d3ebf2baac5174cebe6a1fd6098d43c48b0db1783b71c77250ccf86663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039943542&rft_id=info:pmid/&rfr_iscdi=true |