Loading…

The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respective...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2018-06, Vol.50 (11-12), p.4149-4169
Main Authors: Rai, P., Joshi, M., Dimri, A. P., Turner, A. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983
cites cdi_FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983
container_end_page 4169
container_issue 11-12
container_start_page 4149
container_title Climate dynamics
container_volume 50
creator Rai, P.
Joshi, M.
Dimri, A. P.
Turner, A. G.
description The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean–atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.
doi_str_mv 10.1007/s00382-017-3865-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2040571375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539282410</galeid><sourcerecordid>A539282410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983</originalsourceid><addsrcrecordid>eNp1kd1rFDEUxQdRcK3-Ab4FBMGHqTdfm8xjKX5sqQhu9TXcnUl2U2aSNcmI_e9NO0LdB8lDyOF3DvfmNM1rCucUQL3PAFyzFqhquV7LtnvSrKjgVdGdeNqsoOPQKqnk8-ZFzrcAVKwVWzXh5mBJiqMl0ZFjLDYUjyP5FVPxvS93BEOccPQ2Ex9IqfD24U2ubCExkE0YPAaynafJJvIlhhwf1JIwW8wx1LAfmDzu_FjjXjbPHI7Zvvp7nzXfP364ufzcXn_9tLm8uG57waC0DmFQDBnlToo1E-Dk0KPklOk1p7vO0a6nA_BugGGnOXJAq3YCldBask7zs-bNkntM8edsczG3cU51mGwYCJCKciUrdb5Qexyt8cHFOnZfz2An38dgna_6heQd00xQqIZ3J4bKFPu77HHO2Wy2307Zt_-wB4tjOeQ4zsXXTzoF6QL2KeacrDPH5CdMd4aCuS_XLOWaWq65L9d01cMWT65s2Nv0uN__TX8AkIelNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040571375</pqid></control><display><type>article</type><title>The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability</title><source>Springer Link</source><creator>Rai, P. ; Joshi, M. ; Dimri, A. P. ; Turner, A. G.</creator><creatorcontrib>Rai, P. ; Joshi, M. ; Dimri, A. P. ; Turner, A. G.</creatorcontrib><description>The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean–atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3865-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual variations ; Anomalies ; Atmospheric boundary layer ; Boundary layer winds ; Boundary layers ; Climate variability ; Climatology ; Convection ; Convection heating ; Curl (vectors) ; Diabatic heating ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Feedback ; Feedback loops ; Geophysics/Geodesy ; Heating ; Heavy rainfall ; Human influences ; Monsoon circulation ; Monsoon climates ; Monsoons ; Ocean circulation ; Ocean currents ; Oceanography ; Oceans ; Positive feedback ; Potential vorticity ; Precipitation variability ; Predictions ; Rain ; Rainfall ; Sea surface ; Sea surface temperature ; Somali Jet ; South Asian monsoon ; Summer ; Summer monsoon ; Surface temperature ; Upwelling ; Variability ; Vorticity ; Water resources ; Wind ; Wind stress</subject><ispartof>Climate dynamics, 2018-06, Vol.50 (11-12), p.4149-4169</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983</citedby><cites>FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rai, P.</creatorcontrib><creatorcontrib>Joshi, M.</creatorcontrib><creatorcontrib>Dimri, A. P.</creatorcontrib><creatorcontrib>Turner, A. G.</creatorcontrib><title>The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean–atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.</description><subject>Annual variations</subject><subject>Anomalies</subject><subject>Atmospheric boundary layer</subject><subject>Boundary layer winds</subject><subject>Boundary layers</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Convection</subject><subject>Convection heating</subject><subject>Curl (vectors)</subject><subject>Diabatic heating</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Geophysics/Geodesy</subject><subject>Heating</subject><subject>Heavy rainfall</subject><subject>Human influences</subject><subject>Monsoon circulation</subject><subject>Monsoon climates</subject><subject>Monsoons</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Positive feedback</subject><subject>Potential vorticity</subject><subject>Precipitation variability</subject><subject>Predictions</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Somali Jet</subject><subject>South Asian monsoon</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Surface temperature</subject><subject>Upwelling</subject><subject>Variability</subject><subject>Vorticity</subject><subject>Water resources</subject><subject>Wind</subject><subject>Wind stress</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kd1rFDEUxQdRcK3-Ab4FBMGHqTdfm8xjKX5sqQhu9TXcnUl2U2aSNcmI_e9NO0LdB8lDyOF3DvfmNM1rCucUQL3PAFyzFqhquV7LtnvSrKjgVdGdeNqsoOPQKqnk8-ZFzrcAVKwVWzXh5mBJiqMl0ZFjLDYUjyP5FVPxvS93BEOccPQ2Ex9IqfD24U2ubCExkE0YPAaynafJJvIlhhwf1JIwW8wx1LAfmDzu_FjjXjbPHI7Zvvp7nzXfP364ufzcXn_9tLm8uG57waC0DmFQDBnlToo1E-Dk0KPklOk1p7vO0a6nA_BugGGnOXJAq3YCldBask7zs-bNkntM8edsczG3cU51mGwYCJCKciUrdb5Qexyt8cHFOnZfz2An38dgna_6heQd00xQqIZ3J4bKFPu77HHO2Wy2307Zt_-wB4tjOeQ4zsXXTzoF6QL2KeacrDPH5CdMd4aCuS_XLOWaWq65L9d01cMWT65s2Nv0uN__TX8AkIelNA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Rai, P.</creator><creator>Joshi, M.</creator><creator>Dimri, A. P.</creator><creator>Turner, A. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability</title><author>Rai, P. ; Joshi, M. ; Dimri, A. P. ; Turner, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annual variations</topic><topic>Anomalies</topic><topic>Atmospheric boundary layer</topic><topic>Boundary layer winds</topic><topic>Boundary layers</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Convection</topic><topic>Convection heating</topic><topic>Curl (vectors)</topic><topic>Diabatic heating</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Geophysics/Geodesy</topic><topic>Heating</topic><topic>Heavy rainfall</topic><topic>Human influences</topic><topic>Monsoon circulation</topic><topic>Monsoon climates</topic><topic>Monsoons</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Positive feedback</topic><topic>Potential vorticity</topic><topic>Precipitation variability</topic><topic>Predictions</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Somali Jet</topic><topic>South Asian monsoon</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Surface temperature</topic><topic>Upwelling</topic><topic>Variability</topic><topic>Vorticity</topic><topic>Water resources</topic><topic>Wind</topic><topic>Wind stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, P.</creatorcontrib><creatorcontrib>Joshi, M.</creatorcontrib><creatorcontrib>Dimri, A. P.</creatorcontrib><creatorcontrib>Turner, A. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, P.</au><au>Joshi, M.</au><au>Dimri, A. P.</au><au>Turner, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>50</volume><issue>11-12</issue><spage>4149</spage><epage>4169</epage><pages>4149-4169</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean–atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3865-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2018-06, Vol.50 (11-12), p.4149-4169
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2040571375
source Springer Link
subjects Annual variations
Anomalies
Atmospheric boundary layer
Boundary layer winds
Boundary layers
Climate variability
Climatology
Convection
Convection heating
Curl (vectors)
Diabatic heating
Earth and Environmental Science
Earth Sciences
Evolution
Feedback
Feedback loops
Geophysics/Geodesy
Heating
Heavy rainfall
Human influences
Monsoon circulation
Monsoon climates
Monsoons
Ocean circulation
Ocean currents
Oceanography
Oceans
Positive feedback
Potential vorticity
Precipitation variability
Predictions
Rain
Rainfall
Sea surface
Sea surface temperature
Somali Jet
South Asian monsoon
Summer
Summer monsoon
Surface temperature
Upwelling
Variability
Vorticity
Water resources
Wind
Wind stress
title The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20potential%20vorticity%20anomalies%20in%20the%20Somali%20Jet%20on%20Indian%20Summer%20Monsoon%20Intraseasonal%20Variability&rft.jtitle=Climate%20dynamics&rft.au=Rai,%20P.&rft.date=2018-06-01&rft.volume=50&rft.issue=11-12&rft.spage=4149&rft.epage=4169&rft.pages=4149-4169&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3865-9&rft_dat=%3Cgale_proqu%3EA539282410%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fa0d72a213f546240f5dca53128631b9f19c1d039d0db83a30ae7b4a748852983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040571375&rft_id=info:pmid/&rft_galeid=A539282410&rfr_iscdi=true