Loading…
Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa
West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCM...
Saved in:
Published in: | Climate dynamics 2018-06, Vol.50 (11-12), p.4481-4506 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763 |
container_end_page | 4506 |
container_issue | 11-12 |
container_start_page | 4481 |
container_title | Climate dynamics |
container_volume | 50 |
creator | Gómara, Iñigo Mohino, Elsa Losada, Teresa Domínguez, Marta Suárez-Moreno, Roberto Rodríguez-Fonseca, Belén |
description | West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections. |
doi_str_mv | 10.1007/s00382-017-3886-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2040574690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539282384</galeid><sourcerecordid>A539282384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouF5-gG8Bwbdqrk37uIiXBcEXxcc4TSe7lW5bk66gv97UCj4JgYTJd87MHELOOLvkjJmryJgsRMa4yWRR5JnaIwuuZKoUpdonC1ZKlhlt9CE5ivGNMa5yIxbkdbUdwI2097T-7GDbOGhpwHXTd9A2XzCmB01nCOiaoRnnQtVAxEihq-mILbq-69BNP5H2HxjoC8aRLn1IbifkwEMb8fT3PibPtzdP1_fZw-Pd6nr5kDmpzJhV6KSXRoDJofIgao1eiVqJ0huhK6eFq4HlhkuEgnOtS-SFrjTq3IE3uTwm57PvEPr3Xepv3_pdSEtEK5hi2qi8ZIm6mKk1tGg3CO24iX27-5ndLrUsRSFkoRLIZ9CFPsaA3g6h2UL4tJzZKXE7J25T4nZK3E4aMWtiYrs1hr8R_hd9A0OJhGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040574690</pqid></control><display><type>article</type><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><source>Springer Link</source><creator>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</creator><creatorcontrib>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</creatorcontrib><description>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3886-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advection ; African monsoon ; Anomalies ; Boundary conditions ; Climate ; Climate models ; Climatology ; Computer simulation ; Convergence ; Convergence zones ; Covariance ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Environmental aspects ; General circulation models ; Geophysics/Geodesy ; Humidity ; Intertropical convergence zone ; Migration ; Monsoons ; Oceanography ; Precipitation ; Precipitation (Meteorology) ; Precipitation anomalies ; Regional climate models ; Regional climates ; Sea surface ; Sea surface temperature ; Simulation ; Southern Oscillation ; Surface temperature ; Teleconnections ; Variability</subject><ispartof>Climate dynamics, 2018-06, Vol.50 (11-12), p.4481-4506</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</citedby><cites>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gómara, Iñigo</creatorcontrib><creatorcontrib>Mohino, Elsa</creatorcontrib><creatorcontrib>Losada, Teresa</creatorcontrib><creatorcontrib>Domínguez, Marta</creatorcontrib><creatorcontrib>Suárez-Moreno, Roberto</creatorcontrib><creatorcontrib>Rodríguez-Fonseca, Belén</creatorcontrib><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</description><subject>Advection</subject><subject>African monsoon</subject><subject>Anomalies</subject><subject>Boundary conditions</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Convergence zones</subject><subject>Covariance</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Environmental aspects</subject><subject>General circulation models</subject><subject>Geophysics/Geodesy</subject><subject>Humidity</subject><subject>Intertropical convergence zone</subject><subject>Migration</subject><subject>Monsoons</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Precipitation anomalies</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Southern Oscillation</subject><subject>Surface temperature</subject><subject>Teleconnections</subject><subject>Variability</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLxDAQhYMouF5-gG8Bwbdqrk37uIiXBcEXxcc4TSe7lW5bk66gv97UCj4JgYTJd87MHELOOLvkjJmryJgsRMa4yWRR5JnaIwuuZKoUpdonC1ZKlhlt9CE5ivGNMa5yIxbkdbUdwI2097T-7GDbOGhpwHXTd9A2XzCmB01nCOiaoRnnQtVAxEihq-mILbq-69BNP5H2HxjoC8aRLn1IbifkwEMb8fT3PibPtzdP1_fZw-Pd6nr5kDmpzJhV6KSXRoDJofIgao1eiVqJ0huhK6eFq4HlhkuEgnOtS-SFrjTq3IE3uTwm57PvEPr3Xepv3_pdSEtEK5hi2qi8ZIm6mKk1tGg3CO24iX27-5ndLrUsRSFkoRLIZ9CFPsaA3g6h2UL4tJzZKXE7J25T4nZK3E4aMWtiYrs1hr8R_hd9A0OJhGc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gómara, Iñigo</creator><creator>Mohino, Elsa</creator><creator>Losada, Teresa</creator><creator>Domínguez, Marta</creator><creator>Suárez-Moreno, Roberto</creator><creator>Rodríguez-Fonseca, Belén</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><author>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>African monsoon</topic><topic>Anomalies</topic><topic>Boundary conditions</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Convergence zones</topic><topic>Covariance</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Environmental aspects</topic><topic>General circulation models</topic><topic>Geophysics/Geodesy</topic><topic>Humidity</topic><topic>Intertropical convergence zone</topic><topic>Migration</topic><topic>Monsoons</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Precipitation anomalies</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Southern Oscillation</topic><topic>Surface temperature</topic><topic>Teleconnections</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómara, Iñigo</creatorcontrib><creatorcontrib>Mohino, Elsa</creatorcontrib><creatorcontrib>Losada, Teresa</creatorcontrib><creatorcontrib>Domínguez, Marta</creatorcontrib><creatorcontrib>Suárez-Moreno, Roberto</creatorcontrib><creatorcontrib>Rodríguez-Fonseca, Belén</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómara, Iñigo</au><au>Mohino, Elsa</au><au>Losada, Teresa</au><au>Domínguez, Marta</au><au>Suárez-Moreno, Roberto</au><au>Rodríguez-Fonseca, Belén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>50</volume><issue>11-12</issue><spage>4481</spage><epage>4506</epage><pages>4481-4506</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3886-4</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2018-06, Vol.50 (11-12), p.4481-4506 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2040574690 |
source | Springer Link |
subjects | Advection African monsoon Anomalies Boundary conditions Climate Climate models Climatology Computer simulation Convergence Convergence zones Covariance Dynamics Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Environmental aspects General circulation models Geophysics/Geodesy Humidity Intertropical convergence zone Migration Monsoons Oceanography Precipitation Precipitation (Meteorology) Precipitation anomalies Regional climate models Regional climates Sea surface Sea surface temperature Simulation Southern Oscillation Surface temperature Teleconnections Variability |
title | Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20dynamical%20regionalization%20on%20precipitation%20biases%20and%20teleconnections%20over%20West%20Africa&rft.jtitle=Climate%20dynamics&rft.au=G%C3%B3mara,%20I%C3%B1igo&rft.date=2018-06-01&rft.volume=50&rft.issue=11-12&rft.spage=4481&rft.epage=4506&rft.pages=4481-4506&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3886-4&rft_dat=%3Cgale_proqu%3EA539282384%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040574690&rft_id=info:pmid/&rft_galeid=A539282384&rfr_iscdi=true |