Loading…

Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa

West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCM...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2018-06, Vol.50 (11-12), p.4481-4506
Main Authors: Gómara, Iñigo, Mohino, Elsa, Losada, Teresa, Domínguez, Marta, Suárez-Moreno, Roberto, Rodríguez-Fonseca, Belén
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763
cites cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763
container_end_page 4506
container_issue 11-12
container_start_page 4481
container_title Climate dynamics
container_volume 50
creator Gómara, Iñigo
Mohino, Elsa
Losada, Teresa
Domínguez, Marta
Suárez-Moreno, Roberto
Rodríguez-Fonseca, Belén
description West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.
doi_str_mv 10.1007/s00382-017-3886-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2040574690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539282384</galeid><sourcerecordid>A539282384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouF5-gG8Bwbdqrk37uIiXBcEXxcc4TSe7lW5bk66gv97UCj4JgYTJd87MHELOOLvkjJmryJgsRMa4yWRR5JnaIwuuZKoUpdonC1ZKlhlt9CE5ivGNMa5yIxbkdbUdwI2097T-7GDbOGhpwHXTd9A2XzCmB01nCOiaoRnnQtVAxEihq-mILbq-69BNP5H2HxjoC8aRLn1IbifkwEMb8fT3PibPtzdP1_fZw-Pd6nr5kDmpzJhV6KSXRoDJofIgao1eiVqJ0huhK6eFq4HlhkuEgnOtS-SFrjTq3IE3uTwm57PvEPr3Xepv3_pdSEtEK5hi2qi8ZIm6mKk1tGg3CO24iX27-5ndLrUsRSFkoRLIZ9CFPsaA3g6h2UL4tJzZKXE7J25T4nZK3E4aMWtiYrs1hr8R_hd9A0OJhGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040574690</pqid></control><display><type>article</type><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><source>Springer Link</source><creator>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</creator><creatorcontrib>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</creatorcontrib><description>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3886-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advection ; African monsoon ; Anomalies ; Boundary conditions ; Climate ; Climate models ; Climatology ; Computer simulation ; Convergence ; Convergence zones ; Covariance ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Environmental aspects ; General circulation models ; Geophysics/Geodesy ; Humidity ; Intertropical convergence zone ; Migration ; Monsoons ; Oceanography ; Precipitation ; Precipitation (Meteorology) ; Precipitation anomalies ; Regional climate models ; Regional climates ; Sea surface ; Sea surface temperature ; Simulation ; Southern Oscillation ; Surface temperature ; Teleconnections ; Variability</subject><ispartof>Climate dynamics, 2018-06, Vol.50 (11-12), p.4481-4506</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</citedby><cites>FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gómara, Iñigo</creatorcontrib><creatorcontrib>Mohino, Elsa</creatorcontrib><creatorcontrib>Losada, Teresa</creatorcontrib><creatorcontrib>Domínguez, Marta</creatorcontrib><creatorcontrib>Suárez-Moreno, Roberto</creatorcontrib><creatorcontrib>Rodríguez-Fonseca, Belén</creatorcontrib><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</description><subject>Advection</subject><subject>African monsoon</subject><subject>Anomalies</subject><subject>Boundary conditions</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Convergence zones</subject><subject>Covariance</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Environmental aspects</subject><subject>General circulation models</subject><subject>Geophysics/Geodesy</subject><subject>Humidity</subject><subject>Intertropical convergence zone</subject><subject>Migration</subject><subject>Monsoons</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Precipitation anomalies</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Southern Oscillation</subject><subject>Surface temperature</subject><subject>Teleconnections</subject><subject>Variability</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLxDAQhYMouF5-gG8Bwbdqrk37uIiXBcEXxcc4TSe7lW5bk66gv97UCj4JgYTJd87MHELOOLvkjJmryJgsRMa4yWRR5JnaIwuuZKoUpdonC1ZKlhlt9CE5ivGNMa5yIxbkdbUdwI2097T-7GDbOGhpwHXTd9A2XzCmB01nCOiaoRnnQtVAxEihq-mILbq-69BNP5H2HxjoC8aRLn1IbifkwEMb8fT3PibPtzdP1_fZw-Pd6nr5kDmpzJhV6KSXRoDJofIgao1eiVqJ0huhK6eFq4HlhkuEgnOtS-SFrjTq3IE3uTwm57PvEPr3Xepv3_pdSEtEK5hi2qi8ZIm6mKk1tGg3CO24iX27-5ndLrUsRSFkoRLIZ9CFPsaA3g6h2UL4tJzZKXE7J25T4nZK3E4aMWtiYrs1hr8R_hd9A0OJhGc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gómara, Iñigo</creator><creator>Mohino, Elsa</creator><creator>Losada, Teresa</creator><creator>Domínguez, Marta</creator><creator>Suárez-Moreno, Roberto</creator><creator>Rodríguez-Fonseca, Belén</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</title><author>Gómara, Iñigo ; Mohino, Elsa ; Losada, Teresa ; Domínguez, Marta ; Suárez-Moreno, Roberto ; Rodríguez-Fonseca, Belén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>African monsoon</topic><topic>Anomalies</topic><topic>Boundary conditions</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Convergence zones</topic><topic>Covariance</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Environmental aspects</topic><topic>General circulation models</topic><topic>Geophysics/Geodesy</topic><topic>Humidity</topic><topic>Intertropical convergence zone</topic><topic>Migration</topic><topic>Monsoons</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Precipitation anomalies</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Southern Oscillation</topic><topic>Surface temperature</topic><topic>Teleconnections</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómara, Iñigo</creatorcontrib><creatorcontrib>Mohino, Elsa</creatorcontrib><creatorcontrib>Losada, Teresa</creatorcontrib><creatorcontrib>Domínguez, Marta</creatorcontrib><creatorcontrib>Suárez-Moreno, Roberto</creatorcontrib><creatorcontrib>Rodríguez-Fonseca, Belén</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómara, Iñigo</au><au>Mohino, Elsa</au><au>Losada, Teresa</au><au>Domínguez, Marta</au><au>Suárez-Moreno, Roberto</au><au>Rodríguez-Fonseca, Belén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>50</volume><issue>11-12</issue><spage>4481</spage><epage>4506</epage><pages>4481-4506</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979–2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO–WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED–WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM–WAM teleconnection, which cannot be isolated for the 1979–2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3886-4</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2018-06, Vol.50 (11-12), p.4481-4506
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2040574690
source Springer Link
subjects Advection
African monsoon
Anomalies
Boundary conditions
Climate
Climate models
Climatology
Computer simulation
Convergence
Convergence zones
Covariance
Dynamics
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Environmental aspects
General circulation models
Geophysics/Geodesy
Humidity
Intertropical convergence zone
Migration
Monsoons
Oceanography
Precipitation
Precipitation (Meteorology)
Precipitation anomalies
Regional climate models
Regional climates
Sea surface
Sea surface temperature
Simulation
Southern Oscillation
Surface temperature
Teleconnections
Variability
title Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20dynamical%20regionalization%20on%20precipitation%20biases%20and%20teleconnections%20over%20West%20Africa&rft.jtitle=Climate%20dynamics&rft.au=G%C3%B3mara,%20I%C3%B1igo&rft.date=2018-06-01&rft.volume=50&rft.issue=11-12&rft.spage=4481&rft.epage=4506&rft.pages=4481-4506&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3886-4&rft_dat=%3Cgale_proqu%3EA539282384%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-bec3f372a76abfa2d5ef42d429f725bc52cda06713ea811559e185b5e56caf763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2040574690&rft_id=info:pmid/&rft_galeid=A539282384&rfr_iscdi=true