Loading…

Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model

The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to rel...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences 2018-10, Vol.22 (5), p.1231-1250
Main Authors: Obembe, Abiola D., Abu-Khamsin, Sidqi A., Hossain, M. Enamul, Mustapha, Kassem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33
cites cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33
container_end_page 1250
container_issue 5
container_start_page 1231
container_title Computational geosciences
container_volume 22
creator Obembe, Abiola D.
Abu-Khamsin, Sidqi A.
Hossain, M. Enamul
Mustapha, Kassem
description The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.
doi_str_mv 10.1007/s10596-018-9749-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041054755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041054755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLeA52hmv7J7LEWrUPCi5zD5KqnbTU12lf43b_4xU1bw5Glm4HlfhifLroHdAmP8LgKr2poyaGjLy5bCSTaDihcUyrY9TXuZM5oQfp5dxLhljLW8gFnmFz12h-gi8ZbEUWpn7Rid74nriXbRB22C0QR7TWxANYzHa2e0Q5K4fkOQrML3V_-JnaZrM_TuzX9MaGrBjijs1NiNkey8Nt1ldmaxi-bqd86z14f7l-UjXT-vnpaLNVUF1APFBlkNyFCWSteyKXmu0TKAvJY1SmUrKxtWcdCyZKptpOYWVNFCDaa2WBTz7Gbq3Qf_Ppo4iK0fQ_onipyVSVbJqypRMFEq-BiDsWIf3A7DQQATR69i8iqSV3H0KiBl8ikTE9tvTPhr_j_0A8V9fdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041054755</pqid></control><display><type>article</type><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><source>Springer Link</source><creator>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</creator><creatorcontrib>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</creatorcontrib><description>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-018-9749-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer simulation ; Constitutive equations ; Constitutive relationships ; Diffusion ; Discretization ; Dye dispersion ; Earth and Environmental Science ; Earth Sciences ; Finite difference method ; Flow rates ; Flow velocity ; Fractional calculus ; Fractures ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Material balance ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Oil reservoirs ; Original Paper ; Pore pressure ; Porous media ; Pressure drop ; Reservoirs ; Soil Science &amp; Conservation ; Stability ; Stability analysis ; Stability criteria</subject><ispartof>Computational geosciences, 2018-10, Vol.22 (5), p.1231-1250</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</citedby><cites>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</cites><orcidid>0000-0003-1865-1082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Obembe, Abiola D.</creatorcontrib><creatorcontrib>Abu-Khamsin, Sidqi A.</creatorcontrib><creatorcontrib>Hossain, M. Enamul</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</description><subject>Computer simulation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Diffusion</subject><subject>Discretization</subject><subject>Dye dispersion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite difference method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fractional calculus</subject><subject>Fractures</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Material balance</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Oil reservoirs</subject><subject>Original Paper</subject><subject>Pore pressure</subject><subject>Porous media</subject><subject>Pressure drop</subject><subject>Reservoirs</subject><subject>Soil Science &amp; Conservation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLeA52hmv7J7LEWrUPCi5zD5KqnbTU12lf43b_4xU1bw5Glm4HlfhifLroHdAmP8LgKr2poyaGjLy5bCSTaDihcUyrY9TXuZM5oQfp5dxLhljLW8gFnmFz12h-gi8ZbEUWpn7Rid74nriXbRB22C0QR7TWxANYzHa2e0Q5K4fkOQrML3V_-JnaZrM_TuzX9MaGrBjijs1NiNkey8Nt1ldmaxi-bqd86z14f7l-UjXT-vnpaLNVUF1APFBlkNyFCWSteyKXmu0TKAvJY1SmUrKxtWcdCyZKptpOYWVNFCDaa2WBTz7Gbq3Qf_Ppo4iK0fQ_onipyVSVbJqypRMFEq-BiDsWIf3A7DQQATR69i8iqSV3H0KiBl8ikTE9tvTPhr_j_0A8V9fdk</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Obembe, Abiola D.</creator><creator>Abu-Khamsin, Sidqi A.</creator><creator>Hossain, M. Enamul</creator><creator>Mustapha, Kassem</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1865-1082</orcidid></search><sort><creationdate>20181001</creationdate><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><author>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Diffusion</topic><topic>Discretization</topic><topic>Dye dispersion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite difference method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fractional calculus</topic><topic>Fractures</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Material balance</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Oil reservoirs</topic><topic>Original Paper</topic><topic>Pore pressure</topic><topic>Porous media</topic><topic>Pressure drop</topic><topic>Reservoirs</topic><topic>Soil Science &amp; Conservation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obembe, Abiola D.</creatorcontrib><creatorcontrib>Abu-Khamsin, Sidqi A.</creatorcontrib><creatorcontrib>Hossain, M. Enamul</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obembe, Abiola D.</au><au>Abu-Khamsin, Sidqi A.</au><au>Hossain, M. Enamul</au><au>Mustapha, Kassem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1231</spage><epage>1250</epage><pages>1231-1250</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-018-9749-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1865-1082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2018-10, Vol.22 (5), p.1231-1250
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_journals_2041054755
source Springer Link
subjects Computer simulation
Constitutive equations
Constitutive relationships
Diffusion
Discretization
Dye dispersion
Earth and Environmental Science
Earth Sciences
Finite difference method
Flow rates
Flow velocity
Fractional calculus
Fractures
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Material balance
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematical models
Oil reservoirs
Original Paper
Pore pressure
Porous media
Pressure drop
Reservoirs
Soil Science & Conservation
Stability
Stability analysis
Stability criteria
title Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20subdiffusion%20in%20disordered%20and%20fractured%20media%20using%20a%20Gr%C3%BCnwald-Letnikov%20fractional%20calculus%20model&rft.jtitle=Computational%20geosciences&rft.au=Obembe,%20Abiola%20D.&rft.date=2018-10-01&rft.volume=22&rft.issue=5&rft.spage=1231&rft.epage=1250&rft.pages=1231-1250&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-018-9749-1&rft_dat=%3Cproquest_cross%3E2041054755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041054755&rft_id=info:pmid/&rfr_iscdi=true