Loading…
Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model
The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to rel...
Saved in:
Published in: | Computational geosciences 2018-10, Vol.22 (5), p.1231-1250 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33 |
container_end_page | 1250 |
container_issue | 5 |
container_start_page | 1231 |
container_title | Computational geosciences |
container_volume | 22 |
creator | Obembe, Abiola D. Abu-Khamsin, Sidqi A. Hossain, M. Enamul Mustapha, Kassem |
description | The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media. |
doi_str_mv | 10.1007/s10596-018-9749-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041054755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041054755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLeA52hmv7J7LEWrUPCi5zD5KqnbTU12lf43b_4xU1bw5Glm4HlfhifLroHdAmP8LgKr2poyaGjLy5bCSTaDihcUyrY9TXuZM5oQfp5dxLhljLW8gFnmFz12h-gi8ZbEUWpn7Rid74nriXbRB22C0QR7TWxANYzHa2e0Q5K4fkOQrML3V_-JnaZrM_TuzX9MaGrBjijs1NiNkey8Nt1ldmaxi-bqd86z14f7l-UjXT-vnpaLNVUF1APFBlkNyFCWSteyKXmu0TKAvJY1SmUrKxtWcdCyZKptpOYWVNFCDaa2WBTz7Gbq3Qf_Ppo4iK0fQ_onipyVSVbJqypRMFEq-BiDsWIf3A7DQQATR69i8iqSV3H0KiBl8ikTE9tvTPhr_j_0A8V9fdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041054755</pqid></control><display><type>article</type><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><source>Springer Link</source><creator>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</creator><creatorcontrib>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</creatorcontrib><description>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-018-9749-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer simulation ; Constitutive equations ; Constitutive relationships ; Diffusion ; Discretization ; Dye dispersion ; Earth and Environmental Science ; Earth Sciences ; Finite difference method ; Flow rates ; Flow velocity ; Fractional calculus ; Fractures ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Material balance ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Oil reservoirs ; Original Paper ; Pore pressure ; Porous media ; Pressure drop ; Reservoirs ; Soil Science & Conservation ; Stability ; Stability analysis ; Stability criteria</subject><ispartof>Computational geosciences, 2018-10, Vol.22 (5), p.1231-1250</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</citedby><cites>FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</cites><orcidid>0000-0003-1865-1082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Obembe, Abiola D.</creatorcontrib><creatorcontrib>Abu-Khamsin, Sidqi A.</creatorcontrib><creatorcontrib>Hossain, M. Enamul</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</description><subject>Computer simulation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Diffusion</subject><subject>Discretization</subject><subject>Dye dispersion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite difference method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fractional calculus</subject><subject>Fractures</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Material balance</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Oil reservoirs</subject><subject>Original Paper</subject><subject>Pore pressure</subject><subject>Porous media</subject><subject>Pressure drop</subject><subject>Reservoirs</subject><subject>Soil Science & Conservation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLeA52hmv7J7LEWrUPCi5zD5KqnbTU12lf43b_4xU1bw5Glm4HlfhifLroHdAmP8LgKr2poyaGjLy5bCSTaDihcUyrY9TXuZM5oQfp5dxLhljLW8gFnmFz12h-gi8ZbEUWpn7Rid74nriXbRB22C0QR7TWxANYzHa2e0Q5K4fkOQrML3V_-JnaZrM_TuzX9MaGrBjijs1NiNkey8Nt1ldmaxi-bqd86z14f7l-UjXT-vnpaLNVUF1APFBlkNyFCWSteyKXmu0TKAvJY1SmUrKxtWcdCyZKptpOYWVNFCDaa2WBTz7Gbq3Qf_Ppo4iK0fQ_onipyVSVbJqypRMFEq-BiDsWIf3A7DQQATR69i8iqSV3H0KiBl8ikTE9tvTPhr_j_0A8V9fdk</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Obembe, Abiola D.</creator><creator>Abu-Khamsin, Sidqi A.</creator><creator>Hossain, M. Enamul</creator><creator>Mustapha, Kassem</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1865-1082</orcidid></search><sort><creationdate>20181001</creationdate><title>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</title><author>Obembe, Abiola D. ; Abu-Khamsin, Sidqi A. ; Hossain, M. Enamul ; Mustapha, Kassem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Diffusion</topic><topic>Discretization</topic><topic>Dye dispersion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite difference method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fractional calculus</topic><topic>Fractures</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Material balance</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Oil reservoirs</topic><topic>Original Paper</topic><topic>Pore pressure</topic><topic>Porous media</topic><topic>Pressure drop</topic><topic>Reservoirs</topic><topic>Soil Science & Conservation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obembe, Abiola D.</creatorcontrib><creatorcontrib>Abu-Khamsin, Sidqi A.</creatorcontrib><creatorcontrib>Hossain, M. Enamul</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obembe, Abiola D.</au><au>Abu-Khamsin, Sidqi A.</au><au>Hossain, M. Enamul</au><au>Mustapha, Kassem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1231</spage><epage>1250</epage><pages>1231-1250</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-018-9749-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1865-1082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2018-10, Vol.22 (5), p.1231-1250 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_journals_2041054755 |
source | Springer Link |
subjects | Computer simulation Constitutive equations Constitutive relationships Diffusion Discretization Dye dispersion Earth and Environmental Science Earth Sciences Finite difference method Flow rates Flow velocity Fractional calculus Fractures Geotechnical Engineering & Applied Earth Sciences Hydrogeology Material balance Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematical models Oil reservoirs Original Paper Pore pressure Porous media Pressure drop Reservoirs Soil Science & Conservation Stability Stability analysis Stability criteria |
title | Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20subdiffusion%20in%20disordered%20and%20fractured%20media%20using%20a%20Gr%C3%BCnwald-Letnikov%20fractional%20calculus%20model&rft.jtitle=Computational%20geosciences&rft.au=Obembe,%20Abiola%20D.&rft.date=2018-10-01&rft.volume=22&rft.issue=5&rft.spage=1231&rft.epage=1250&rft.pages=1231-1250&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-018-9749-1&rft_dat=%3Cproquest_cross%3E2041054755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a8a061a0ab4cd6b8472daf01126b6abcf5fb80571db40c98bd7f1c39161e6fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041054755&rft_id=info:pmid/&rfr_iscdi=true |