Loading…

A generalized quasi two-phase bulk mixture model for mass flow

We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equati...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2018-03, Vol.99, p.229-239
Main Authors: Pokhrel, Puskar R., Khattri, Khim B., Tuladhar, Bhadra Man, Pudasaini, Shiva P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63
cites cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63
container_end_page 239
container_issue
container_start_page 229
container_title International journal of non-linear mechanics
container_volume 99
creator Pokhrel, Puskar R.
Khattri, Khim B.
Tuladhar, Bhadra Man
Pudasaini, Shiva P.
description We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.
doi_str_mv 10.1016/j.ijnonlinmec.2017.12.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041143574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217306352</els_id><sourcerecordid>2041143574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqXwH4yYE_yK7S5IVcVLqsQCs2UnN-CQxK2dUODXk6oMjEx3Od85uh9Cl5TklFB53eS-6UPf-r6DMmeEqpyynBB-hGZUK50VkutjNCOEkUwJyU7RWUoNmVhB1AzdLPEr9BBt67-hwtvRJo-HXcg2bzYBdmP7jjv_OYwRcBcqaHEdIu5sSrhuw-4cndS2TXDxe-fo5e72efWQrZ_uH1fLdVZysRgyWisgruSOOVprVzK1kMxZxwtdaVhUTnALzComCyWEkrpgVJGaOE2kACv5HF0dejcxbEdIg2nCGPtp0jAiKBV8AqfU4pAqY0gpQm020Xc2fhlKzF6XacwfXWavy1BmJl0TuzqwML3x4SGaVHroS6h8hHIwVfD_aPkBIsd4zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041143574</pqid></control><display><type>article</type><title>A generalized quasi two-phase bulk mixture model for mass flow</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</creator><creatorcontrib>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</creatorcontrib><description>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2017.12.003</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computer simulation ; Flow equations ; Generalized bulk and shear viscosities ; Generalized mixture velocities and pressure ; Geophysics ; Mass flow ; Mathematical models ; Mixture flow ; Partial differential equations ; Physical properties ; Pressure dependence ; Quasi-two-phase flow ; Rheological properties ; Rheology ; Velocity ; Velocity and pressure drifts ; Viscosity ; Viscous fluids</subject><ispartof>International journal of non-linear mechanics, 2018-03, Vol.99, p.229-239</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</citedby><cites>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217306352$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Pokhrel, Puskar R.</creatorcontrib><creatorcontrib>Khattri, Khim B.</creatorcontrib><creatorcontrib>Tuladhar, Bhadra Man</creatorcontrib><creatorcontrib>Pudasaini, Shiva P.</creatorcontrib><title>A generalized quasi two-phase bulk mixture model for mass flow</title><title>International journal of non-linear mechanics</title><description>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</description><subject>Computer simulation</subject><subject>Flow equations</subject><subject>Generalized bulk and shear viscosities</subject><subject>Generalized mixture velocities and pressure</subject><subject>Geophysics</subject><subject>Mass flow</subject><subject>Mathematical models</subject><subject>Mixture flow</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Pressure dependence</subject><subject>Quasi-two-phase flow</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Velocity</subject><subject>Velocity and pressure drifts</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhS0EEqXwH4yYE_yK7S5IVcVLqsQCs2UnN-CQxK2dUODXk6oMjEx3Od85uh9Cl5TklFB53eS-6UPf-r6DMmeEqpyynBB-hGZUK50VkutjNCOEkUwJyU7RWUoNmVhB1AzdLPEr9BBt67-hwtvRJo-HXcg2bzYBdmP7jjv_OYwRcBcqaHEdIu5sSrhuw-4cndS2TXDxe-fo5e72efWQrZ_uH1fLdVZysRgyWisgruSOOVprVzK1kMxZxwtdaVhUTnALzComCyWEkrpgVJGaOE2kACv5HF0dejcxbEdIg2nCGPtp0jAiKBV8AqfU4pAqY0gpQm020Xc2fhlKzF6XacwfXWavy1BmJl0TuzqwML3x4SGaVHroS6h8hHIwVfD_aPkBIsd4zg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Pokhrel, Puskar R.</creator><creator>Khattri, Khim B.</creator><creator>Tuladhar, Bhadra Man</creator><creator>Pudasaini, Shiva P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201803</creationdate><title>A generalized quasi two-phase bulk mixture model for mass flow</title><author>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Flow equations</topic><topic>Generalized bulk and shear viscosities</topic><topic>Generalized mixture velocities and pressure</topic><topic>Geophysics</topic><topic>Mass flow</topic><topic>Mathematical models</topic><topic>Mixture flow</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Pressure dependence</topic><topic>Quasi-two-phase flow</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Velocity</topic><topic>Velocity and pressure drifts</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokhrel, Puskar R.</creatorcontrib><creatorcontrib>Khattri, Khim B.</creatorcontrib><creatorcontrib>Tuladhar, Bhadra Man</creatorcontrib><creatorcontrib>Pudasaini, Shiva P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokhrel, Puskar R.</au><au>Khattri, Khim B.</au><au>Tuladhar, Bhadra Man</au><au>Pudasaini, Shiva P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized quasi two-phase bulk mixture model for mass flow</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-03</date><risdate>2018</risdate><volume>99</volume><spage>229</spage><epage>239</epage><pages>229-239</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2017.12.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2018-03, Vol.99, p.229-239
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2041143574
source ScienceDirect Freedom Collection; Backfile Package - Physics General (Legacy) [YPA]
subjects Computer simulation
Flow equations
Generalized bulk and shear viscosities
Generalized mixture velocities and pressure
Geophysics
Mass flow
Mathematical models
Mixture flow
Partial differential equations
Physical properties
Pressure dependence
Quasi-two-phase flow
Rheological properties
Rheology
Velocity
Velocity and pressure drifts
Viscosity
Viscous fluids
title A generalized quasi two-phase bulk mixture model for mass flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20quasi%20two-phase%20bulk%20mixture%20model%20for%20mass%20flow&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Pokhrel,%20Puskar%20R.&rft.date=2018-03&rft.volume=99&rft.spage=229&rft.epage=239&rft.pages=229-239&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2017.12.003&rft_dat=%3Cproquest_cross%3E2041143574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041143574&rft_id=info:pmid/&rfr_iscdi=true