Loading…
A generalized quasi two-phase bulk mixture model for mass flow
We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equati...
Saved in:
Published in: | International journal of non-linear mechanics 2018-03, Vol.99, p.229-239 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63 |
container_end_page | 239 |
container_issue | |
container_start_page | 229 |
container_title | International journal of non-linear mechanics |
container_volume | 99 |
creator | Pokhrel, Puskar R. Khattri, Khim B. Tuladhar, Bhadra Man Pudasaini, Shiva P. |
description | We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here. |
doi_str_mv | 10.1016/j.ijnonlinmec.2017.12.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041143574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217306352</els_id><sourcerecordid>2041143574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqXwH4yYE_yK7S5IVcVLqsQCs2UnN-CQxK2dUODXk6oMjEx3Od85uh9Cl5TklFB53eS-6UPf-r6DMmeEqpyynBB-hGZUK50VkutjNCOEkUwJyU7RWUoNmVhB1AzdLPEr9BBt67-hwtvRJo-HXcg2bzYBdmP7jjv_OYwRcBcqaHEdIu5sSrhuw-4cndS2TXDxe-fo5e72efWQrZ_uH1fLdVZysRgyWisgruSOOVprVzK1kMxZxwtdaVhUTnALzComCyWEkrpgVJGaOE2kACv5HF0dejcxbEdIg2nCGPtp0jAiKBV8AqfU4pAqY0gpQm020Xc2fhlKzF6XacwfXWavy1BmJl0TuzqwML3x4SGaVHroS6h8hHIwVfD_aPkBIsd4zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041143574</pqid></control><display><type>article</type><title>A generalized quasi two-phase bulk mixture model for mass flow</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</creator><creatorcontrib>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</creatorcontrib><description>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2017.12.003</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computer simulation ; Flow equations ; Generalized bulk and shear viscosities ; Generalized mixture velocities and pressure ; Geophysics ; Mass flow ; Mathematical models ; Mixture flow ; Partial differential equations ; Physical properties ; Pressure dependence ; Quasi-two-phase flow ; Rheological properties ; Rheology ; Velocity ; Velocity and pressure drifts ; Viscosity ; Viscous fluids</subject><ispartof>International journal of non-linear mechanics, 2018-03, Vol.99, p.229-239</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</citedby><cites>FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217306352$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Pokhrel, Puskar R.</creatorcontrib><creatorcontrib>Khattri, Khim B.</creatorcontrib><creatorcontrib>Tuladhar, Bhadra Man</creatorcontrib><creatorcontrib>Pudasaini, Shiva P.</creatorcontrib><title>A generalized quasi two-phase bulk mixture model for mass flow</title><title>International journal of non-linear mechanics</title><description>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</description><subject>Computer simulation</subject><subject>Flow equations</subject><subject>Generalized bulk and shear viscosities</subject><subject>Generalized mixture velocities and pressure</subject><subject>Geophysics</subject><subject>Mass flow</subject><subject>Mathematical models</subject><subject>Mixture flow</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Pressure dependence</subject><subject>Quasi-two-phase flow</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Velocity</subject><subject>Velocity and pressure drifts</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhS0EEqXwH4yYE_yK7S5IVcVLqsQCs2UnN-CQxK2dUODXk6oMjEx3Od85uh9Cl5TklFB53eS-6UPf-r6DMmeEqpyynBB-hGZUK50VkutjNCOEkUwJyU7RWUoNmVhB1AzdLPEr9BBt67-hwtvRJo-HXcg2bzYBdmP7jjv_OYwRcBcqaHEdIu5sSrhuw-4cndS2TXDxe-fo5e72efWQrZ_uH1fLdVZysRgyWisgruSOOVprVzK1kMxZxwtdaVhUTnALzComCyWEkrpgVJGaOE2kACv5HF0dejcxbEdIg2nCGPtp0jAiKBV8AqfU4pAqY0gpQm020Xc2fhlKzF6XacwfXWavy1BmJl0TuzqwML3x4SGaVHroS6h8hHIwVfD_aPkBIsd4zg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Pokhrel, Puskar R.</creator><creator>Khattri, Khim B.</creator><creator>Tuladhar, Bhadra Man</creator><creator>Pudasaini, Shiva P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201803</creationdate><title>A generalized quasi two-phase bulk mixture model for mass flow</title><author>Pokhrel, Puskar R. ; Khattri, Khim B. ; Tuladhar, Bhadra Man ; Pudasaini, Shiva P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Flow equations</topic><topic>Generalized bulk and shear viscosities</topic><topic>Generalized mixture velocities and pressure</topic><topic>Geophysics</topic><topic>Mass flow</topic><topic>Mathematical models</topic><topic>Mixture flow</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Pressure dependence</topic><topic>Quasi-two-phase flow</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Velocity</topic><topic>Velocity and pressure drifts</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokhrel, Puskar R.</creatorcontrib><creatorcontrib>Khattri, Khim B.</creatorcontrib><creatorcontrib>Tuladhar, Bhadra Man</creatorcontrib><creatorcontrib>Pudasaini, Shiva P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokhrel, Puskar R.</au><au>Khattri, Khim B.</au><au>Tuladhar, Bhadra Man</au><au>Pudasaini, Shiva P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized quasi two-phase bulk mixture model for mass flow</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-03</date><risdate>2018</risdate><volume>99</volume><spage>229</spage><epage>239</epage><pages>229-239</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We employ full dimensional two-phase mass flow equations (Pudasaini, 2012) [18] to develop a generalized quasi two-phase bulk model for a rapid flow of a debris mixture consisting of viscous fluid and solid particles down a channel. The emerging model, as a set of coupled partial differential equations, is characterized by some new mechanical and dynamical aspects of generalized bulk and shear viscosities, pressure, velocities and effective friction for the mixture where all these are evolving as functions of several dynamical variables, physical parameters, inertial and dynamical coefficients and drift factors. These coefficients and factors are uniquely constructed, contain the underlying physics of the system, and reveal strong coupling between the phases. The new model is mechanically described by an extended pressure and rate-dependent Coulomb-viscoplastic rheology of mixture. The model is expected to simulate the velocities and pressure of the bulk mixture much faster than the two-phase mass flow model. Furthermore, the introduction of the velocity and pressure drifts makes it possible to reconstruct the two-phase dynamics. This shows the application potential of the new model presented here.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2017.12.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2018-03, Vol.99, p.229-239 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2041143574 |
source | ScienceDirect Freedom Collection; Backfile Package - Physics General (Legacy) [YPA] |
subjects | Computer simulation Flow equations Generalized bulk and shear viscosities Generalized mixture velocities and pressure Geophysics Mass flow Mathematical models Mixture flow Partial differential equations Physical properties Pressure dependence Quasi-two-phase flow Rheological properties Rheology Velocity Velocity and pressure drifts Viscosity Viscous fluids |
title | A generalized quasi two-phase bulk mixture model for mass flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20quasi%20two-phase%20bulk%20mixture%20model%20for%20mass%20flow&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Pokhrel,%20Puskar%20R.&rft.date=2018-03&rft.volume=99&rft.spage=229&rft.epage=239&rft.pages=229-239&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2017.12.003&rft_dat=%3Cproquest_cross%3E2041143574%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-1f7e0bc3b2b1f8bc27962bab358d8e9db43ae2a726574476852170f0b8064ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041143574&rft_id=info:pmid/&rfr_iscdi=true |