Loading…

Selection of the data time interval for the prediction of maximum ozone concentrations

This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment 2018-06, Vol.32 (6), p.1759-1770
Main Authors: Kocijan, Juš, Gradišar, Dejan, Stepančič, Martin, Božnar, Marija Zlata, Grašič, Boštjan, Mlakar, Primož
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3
cites cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3
container_end_page 1770
container_issue 6
container_start_page 1759
container_title Stochastic environmental research and risk assessment
container_volume 32
creator Kocijan, Juš
Gradišar, Dejan
Stepančič, Martin
Božnar, Marija Zlata
Grašič, Boštjan
Mlakar, Primož
description This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.
doi_str_mv 10.1007/s00477-017-1468-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041257496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041257496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFczSdq0R1n8ggUPflxDmky1sm3WJCuuv97WynryNAPzvO_AQ8gpsHNgTF1ExqRSGQOVgSzKbHdAZiBFkQmeV4f7XbJjsoixrYdMLqoK2Iw8P-AabWp9T31D0ytSZ5Khqe2Qtn3C8GHWtPHh57QJ6No93JnPttt21H_5Hqn1vcU-BTOe4wk5asw64uJ3zsnT9dXj8jZb3d_cLS9XmRVQpAyU4LW1NTSqQGGBI7oSham5kc7VJdqcO-BOlVzUeVODKXLjpBKWMyHBiDk5m3o3wb9vMSb95rehH15qziTwXMmqGCiYKBt8jAEbvQltZ8JOA9OjQT0Z1INBPRrUuyHDp0wc2P4Fw1_z_6Fvn3d1WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041257496</pqid></control><display><type>article</type><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><source>Springer Link</source><creator>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</creator><creatorcontrib>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</creatorcontrib><description>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-017-1468-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Environment ; Gaussian process ; Iterative methods ; Math. Appl. in Environmental Science ; Mathematical models ; Original Paper ; Ozone ; Physics ; Predictions ; Probability Theory and Stochastic Processes ; Statistics for Engineering ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2018-06, Vol.32 (6), p.1759-1770</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</citedby><cites>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</cites><orcidid>0000-0002-1221-946X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kocijan, Juš</creatorcontrib><creatorcontrib>Gradišar, Dejan</creatorcontrib><creatorcontrib>Stepančič, Martin</creatorcontrib><creatorcontrib>Božnar, Marija Zlata</creatorcontrib><creatorcontrib>Grašič, Boštjan</creatorcontrib><creatorcontrib>Mlakar, Primož</creatorcontrib><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</description><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Gaussian process</subject><subject>Iterative methods</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Ozone</subject><subject>Physics</subject><subject>Predictions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFczSdq0R1n8ggUPflxDmky1sm3WJCuuv97WynryNAPzvO_AQ8gpsHNgTF1ExqRSGQOVgSzKbHdAZiBFkQmeV4f7XbJjsoixrYdMLqoK2Iw8P-AabWp9T31D0ytSZ5Khqe2Qtn3C8GHWtPHh57QJ6No93JnPttt21H_5Hqn1vcU-BTOe4wk5asw64uJ3zsnT9dXj8jZb3d_cLS9XmRVQpAyU4LW1NTSqQGGBI7oSham5kc7VJdqcO-BOlVzUeVODKXLjpBKWMyHBiDk5m3o3wb9vMSb95rehH15qziTwXMmqGCiYKBt8jAEbvQltZ8JOA9OjQT0Z1INBPRrUuyHDp0wc2P4Fw1_z_6Fvn3d1WA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Kocijan, Juš</creator><creator>Gradišar, Dejan</creator><creator>Stepančič, Martin</creator><creator>Božnar, Marija Zlata</creator><creator>Grašič, Boštjan</creator><creator>Mlakar, Primož</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1221-946X</orcidid></search><sort><creationdate>20180601</creationdate><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><author>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Gaussian process</topic><topic>Iterative methods</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Ozone</topic><topic>Physics</topic><topic>Predictions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocijan, Juš</creatorcontrib><creatorcontrib>Gradišar, Dejan</creatorcontrib><creatorcontrib>Stepančič, Martin</creatorcontrib><creatorcontrib>Božnar, Marija Zlata</creatorcontrib><creatorcontrib>Grašič, Boštjan</creatorcontrib><creatorcontrib>Mlakar, Primož</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocijan, Juš</au><au>Gradišar, Dejan</au><au>Stepančič, Martin</au><au>Božnar, Marija Zlata</au><au>Grašič, Boštjan</au><au>Mlakar, Primož</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of the data time interval for the prediction of maximum ozone concentrations</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>32</volume><issue>6</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-017-1468-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1221-946X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2018-06, Vol.32 (6), p.1759-1770
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_2041257496
source Springer Link
subjects Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Earth and Environmental Science
Earth Sciences
Environment
Gaussian process
Iterative methods
Math. Appl. in Environmental Science
Mathematical models
Original Paper
Ozone
Physics
Predictions
Probability Theory and Stochastic Processes
Statistics for Engineering
Waste Water Technology
Water Management
Water Pollution Control
title Selection of the data time interval for the prediction of maximum ozone concentrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20the%20data%20time%20interval%20for%20the%20prediction%20of%20maximum%20ozone%20concentrations&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Kocijan,%20Ju%C5%A1&rft.date=2018-06-01&rft.volume=32&rft.issue=6&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-017-1468-y&rft_dat=%3Cproquest_cross%3E2041257496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041257496&rft_id=info:pmid/&rfr_iscdi=true