Loading…
Selection of the data time interval for the prediction of maximum ozone concentrations
This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead...
Saved in:
Published in: | Stochastic environmental research and risk assessment 2018-06, Vol.32 (6), p.1759-1770 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3 |
container_end_page | 1770 |
container_issue | 6 |
container_start_page | 1759 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 32 |
creator | Kocijan, Juš Gradišar, Dejan Stepančič, Martin Božnar, Marija Zlata Grašič, Boštjan Mlakar, Primož |
description | This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis. |
doi_str_mv | 10.1007/s00477-017-1468-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041257496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041257496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFczSdq0R1n8ggUPflxDmky1sm3WJCuuv97WynryNAPzvO_AQ8gpsHNgTF1ExqRSGQOVgSzKbHdAZiBFkQmeV4f7XbJjsoixrYdMLqoK2Iw8P-AabWp9T31D0ytSZ5Khqe2Qtn3C8GHWtPHh57QJ6No93JnPttt21H_5Hqn1vcU-BTOe4wk5asw64uJ3zsnT9dXj8jZb3d_cLS9XmRVQpAyU4LW1NTSqQGGBI7oSham5kc7VJdqcO-BOlVzUeVODKXLjpBKWMyHBiDk5m3o3wb9vMSb95rehH15qziTwXMmqGCiYKBt8jAEbvQltZ8JOA9OjQT0Z1INBPRrUuyHDp0wc2P4Fw1_z_6Fvn3d1WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041257496</pqid></control><display><type>article</type><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><source>Springer Link</source><creator>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</creator><creatorcontrib>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</creatorcontrib><description>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-017-1468-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Environment ; Gaussian process ; Iterative methods ; Math. Appl. in Environmental Science ; Mathematical models ; Original Paper ; Ozone ; Physics ; Predictions ; Probability Theory and Stochastic Processes ; Statistics for Engineering ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2018-06, Vol.32 (6), p.1759-1770</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</citedby><cites>FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</cites><orcidid>0000-0002-1221-946X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Kocijan, Juš</creatorcontrib><creatorcontrib>Gradišar, Dejan</creatorcontrib><creatorcontrib>Stepančič, Martin</creatorcontrib><creatorcontrib>Božnar, Marija Zlata</creatorcontrib><creatorcontrib>Grašič, Boštjan</creatorcontrib><creatorcontrib>Mlakar, Primož</creatorcontrib><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</description><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Gaussian process</subject><subject>Iterative methods</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Ozone</subject><subject>Physics</subject><subject>Predictions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFczSdq0R1n8ggUPflxDmky1sm3WJCuuv97WynryNAPzvO_AQ8gpsHNgTF1ExqRSGQOVgSzKbHdAZiBFkQmeV4f7XbJjsoixrYdMLqoK2Iw8P-AabWp9T31D0ytSZ5Khqe2Qtn3C8GHWtPHh57QJ6No93JnPttt21H_5Hqn1vcU-BTOe4wk5asw64uJ3zsnT9dXj8jZb3d_cLS9XmRVQpAyU4LW1NTSqQGGBI7oSham5kc7VJdqcO-BOlVzUeVODKXLjpBKWMyHBiDk5m3o3wb9vMSb95rehH15qziTwXMmqGCiYKBt8jAEbvQltZ8JOA9OjQT0Z1INBPRrUuyHDp0wc2P4Fw1_z_6Fvn3d1WA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Kocijan, Juš</creator><creator>Gradišar, Dejan</creator><creator>Stepančič, Martin</creator><creator>Božnar, Marija Zlata</creator><creator>Grašič, Boštjan</creator><creator>Mlakar, Primož</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1221-946X</orcidid></search><sort><creationdate>20180601</creationdate><title>Selection of the data time interval for the prediction of maximum ozone concentrations</title><author>Kocijan, Juš ; Gradišar, Dejan ; Stepančič, Martin ; Božnar, Marija Zlata ; Grašič, Boštjan ; Mlakar, Primož</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Gaussian process</topic><topic>Iterative methods</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Ozone</topic><topic>Physics</topic><topic>Predictions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocijan, Juš</creatorcontrib><creatorcontrib>Gradišar, Dejan</creatorcontrib><creatorcontrib>Stepančič, Martin</creatorcontrib><creatorcontrib>Božnar, Marija Zlata</creatorcontrib><creatorcontrib>Grašič, Boštjan</creatorcontrib><creatorcontrib>Mlakar, Primož</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocijan, Juš</au><au>Gradišar, Dejan</au><au>Stepančič, Martin</au><au>Božnar, Marija Zlata</au><au>Grašič, Boštjan</au><au>Mlakar, Primož</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of the data time interval for the prediction of maximum ozone concentrations</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>32</volume><issue>6</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>This paper highlights the problem of step-length selection for the one-step-ahead prediction of ozone called the data time interval. This is done using a case study-based comparison of two approaches for predicting the maximum daily values of tropospheric ozone. The first approach is the 1-day-ahead prediction and the second is the prediction of the maximum values based on a multi-step-ahead iteration of 1-h predictions. Gaussian process modelling is utilised for this comparison. In particular, evolving Gaussian-process models are used that update on-line with the incoming measurement data. These sorts of models have been successfully used in the past for the prediction of ozone pollution. This paper contributes an assessment of the way that the maximum ozone values are predicted. A comparison of the daily maximum ozone values forecasted by a model based on 1-day-ahead predictions with those obtained by iterated 1-h-ahead predictions of the ozone with predictions at predetermined hours of the day is given. The forecast results are in favour of the on-line model based on hourly predictions when approaching closer to the real maximum values of ozone, and in favour of the daily predictions when they are made on a daily basis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-017-1468-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1221-946X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2018-06, Vol.32 (6), p.1759-1770 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_2041257496 |
source | Springer Link |
subjects | Aquatic Pollution Chemistry and Earth Sciences Computational Intelligence Computer Science Earth and Environmental Science Earth Sciences Environment Gaussian process Iterative methods Math. Appl. in Environmental Science Mathematical models Original Paper Ozone Physics Predictions Probability Theory and Stochastic Processes Statistics for Engineering Waste Water Technology Water Management Water Pollution Control |
title | Selection of the data time interval for the prediction of maximum ozone concentrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20the%20data%20time%20interval%20for%20the%20prediction%20of%20maximum%20ozone%20concentrations&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Kocijan,%20Ju%C5%A1&rft.date=2018-06-01&rft.volume=32&rft.issue=6&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-017-1468-y&rft_dat=%3Cproquest_cross%3E2041257496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1732bccb1f76e3c12eed8e3ab2a4ddb8ec52d12d7823b5fb1a65ad473c20341a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041257496&rft_id=info:pmid/&rfr_iscdi=true |