Loading…
A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion
We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. T...
Saved in:
Published in: | Computational & applied mathematics 2018-05, Vol.37 (2), p.1825-1846 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3 |
container_end_page | 1846 |
container_issue | 2 |
container_start_page | 1825 |
container_title | Computational & applied mathematics |
container_volume | 37 |
creator | Azevedo, J. S. Wisniewski, F. Oliveira, S. P. |
description | We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity. |
doi_str_mv | 10.1007/s40314-017-0422-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041301867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041301867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zROl1UFBVGJDawtxx3TlDYudkJhxx24BPfgJpwEt0FixWw8fnrvSfMRcsrgnAGoiyhBMJkBUxlIzjN5QHqsgPQTwA9JDxiwrOAwPCaDGJeQRgIwnvdIGNOpWWF4qmq6xmbh53RbNQvabH02r9ZYx8rXZkWvjQm0NLGK1LW1bZKaNh9os0Bq_XrTNmYnUu_20q0Ji7bG-vv9Y-a_Pl-Q4uvG7NtOyJEzq4iD37dPHq4u7yfX2exuejMZzzIrpGwybobWsWIkRe6GslQMrDBOFaoAISyWwiHHkZUOkRVW8JIPS5XbvFDK5jmg6JOzrncT_HOLsdFL34Z0TNQcJBPAilwlF-tcNvgYAzq9CdXahDfNQO_o6o6uTnT1jq6WKcO7TEze-hHDX_P_oR_8iX8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041301867</pqid></control><display><type>article</type><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><source>Springer Nature</source><creator>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</creator><creatorcontrib>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</creatorcontrib><description>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-017-0422-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Approximation ; Basis functions ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Discrete Wavelet Transform ; Galerkin method ; Integral equations ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Shape functions ; Sparsity ; Wavelet transforms</subject><ispartof>Computational & applied mathematics, 2018-05, Vol.37 (2), p.1825-1846</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</citedby><cites>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Azevedo, J. S.</creatorcontrib><creatorcontrib>Wisniewski, F.</creatorcontrib><creatorcontrib>Oliveira, S. P.</creatorcontrib><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discrete Wavelet Transform</subject><subject>Galerkin method</subject><subject>Integral equations</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Shape functions</subject><subject>Sparsity</subject><subject>Wavelet transforms</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zROl1UFBVGJDawtxx3TlDYudkJhxx24BPfgJpwEt0FixWw8fnrvSfMRcsrgnAGoiyhBMJkBUxlIzjN5QHqsgPQTwA9JDxiwrOAwPCaDGJeQRgIwnvdIGNOpWWF4qmq6xmbh53RbNQvabH02r9ZYx8rXZkWvjQm0NLGK1LW1bZKaNh9os0Bq_XrTNmYnUu_20q0Ji7bG-vv9Y-a_Pl-Q4uvG7NtOyJEzq4iD37dPHq4u7yfX2exuejMZzzIrpGwybobWsWIkRe6GslQMrDBOFaoAISyWwiHHkZUOkRVW8JIPS5XbvFDK5jmg6JOzrncT_HOLsdFL34Z0TNQcJBPAilwlF-tcNvgYAzq9CdXahDfNQO_o6o6uTnT1jq6WKcO7TEze-hHDX_P_oR_8iX8T</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Azevedo, J. S.</creator><creator>Wisniewski, F.</creator><creator>Oliveira, S. P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><author>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discrete Wavelet Transform</topic><topic>Galerkin method</topic><topic>Integral equations</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Shape functions</topic><topic>Sparsity</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azevedo, J. S.</creatorcontrib><creatorcontrib>Wisniewski, F.</creatorcontrib><creatorcontrib>Oliveira, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azevedo, J. S.</au><au>Wisniewski, F.</au><au>Oliveira, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>1825</spage><epage>1846</epage><pages>1825-1846</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-017-0422-4</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0101-8205 |
ispartof | Computational & applied mathematics, 2018-05, Vol.37 (2), p.1825-1846 |
issn | 0101-8205 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2041301867 |
source | Springer Nature |
subjects | Algorithms Applications of Mathematics Applied physics Approximation Basis functions Computational mathematics Computational Mathematics and Numerical Analysis Discrete Wavelet Transform Galerkin method Integral equations Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Numerical methods Shape functions Sparsity Wavelet transforms |
title | A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Galerkin%20method%20with%20two-dimensional%20Haar%20basis%20functions%20for%20the%20computation%20of%20the%20Karhunen%E2%80%93Lo%C3%A8ve%20expansion&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Azevedo,%20J.%20S.&rft.date=2018-05-01&rft.volume=37&rft.issue=2&rft.spage=1825&rft.epage=1846&rft.pages=1825-1846&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-017-0422-4&rft_dat=%3Cproquest_cross%3E2041301867%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041301867&rft_id=info:pmid/&rfr_iscdi=true |