Loading…

A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion

We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. T...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2018-05, Vol.37 (2), p.1825-1846
Main Authors: Azevedo, J. S., Wisniewski, F., Oliveira, S. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3
cites cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3
container_end_page 1846
container_issue 2
container_start_page 1825
container_title Computational & applied mathematics
container_volume 37
creator Azevedo, J. S.
Wisniewski, F.
Oliveira, S. P.
description We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.
doi_str_mv 10.1007/s40314-017-0422-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041301867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041301867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zROl1UFBVGJDawtxx3TlDYudkJhxx24BPfgJpwEt0FixWw8fnrvSfMRcsrgnAGoiyhBMJkBUxlIzjN5QHqsgPQTwA9JDxiwrOAwPCaDGJeQRgIwnvdIGNOpWWF4qmq6xmbh53RbNQvabH02r9ZYx8rXZkWvjQm0NLGK1LW1bZKaNh9os0Bq_XrTNmYnUu_20q0Ji7bG-vv9Y-a_Pl-Q4uvG7NtOyJEzq4iD37dPHq4u7yfX2exuejMZzzIrpGwybobWsWIkRe6GslQMrDBOFaoAISyWwiHHkZUOkRVW8JIPS5XbvFDK5jmg6JOzrncT_HOLsdFL34Z0TNQcJBPAilwlF-tcNvgYAzq9CdXahDfNQO_o6o6uTnT1jq6WKcO7TEze-hHDX_P_oR_8iX8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041301867</pqid></control><display><type>article</type><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><source>Springer Nature</source><creator>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</creator><creatorcontrib>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</creatorcontrib><description>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-017-0422-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Approximation ; Basis functions ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Discrete Wavelet Transform ; Galerkin method ; Integral equations ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Shape functions ; Sparsity ; Wavelet transforms</subject><ispartof>Computational &amp; applied mathematics, 2018-05, Vol.37 (2), p.1825-1846</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</citedby><cites>FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Azevedo, J. S.</creatorcontrib><creatorcontrib>Wisniewski, F.</creatorcontrib><creatorcontrib>Oliveira, S. P.</creatorcontrib><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discrete Wavelet Transform</subject><subject>Galerkin method</subject><subject>Integral equations</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Shape functions</subject><subject>Sparsity</subject><subject>Wavelet transforms</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EElXpAdhZYh0Y_zROl1UFBVGJDawtxx3TlDYudkJhxx24BPfgJpwEt0FixWw8fnrvSfMRcsrgnAGoiyhBMJkBUxlIzjN5QHqsgPQTwA9JDxiwrOAwPCaDGJeQRgIwnvdIGNOpWWF4qmq6xmbh53RbNQvabH02r9ZYx8rXZkWvjQm0NLGK1LW1bZKaNh9os0Bq_XrTNmYnUu_20q0Ji7bG-vv9Y-a_Pl-Q4uvG7NtOyJEzq4iD37dPHq4u7yfX2exuejMZzzIrpGwybobWsWIkRe6GslQMrDBOFaoAISyWwiHHkZUOkRVW8JIPS5XbvFDK5jmg6JOzrncT_HOLsdFL34Z0TNQcJBPAilwlF-tcNvgYAzq9CdXahDfNQO_o6o6uTnT1jq6WKcO7TEze-hHDX_P_oR_8iX8T</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Azevedo, J. S.</creator><creator>Wisniewski, F.</creator><creator>Oliveira, S. P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</title><author>Azevedo, J. S. ; Wisniewski, F. ; Oliveira, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discrete Wavelet Transform</topic><topic>Galerkin method</topic><topic>Integral equations</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Shape functions</topic><topic>Sparsity</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azevedo, J. S.</creatorcontrib><creatorcontrib>Wisniewski, F.</creatorcontrib><creatorcontrib>Oliveira, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azevedo, J. S.</au><au>Wisniewski, F.</au><au>Oliveira, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>1825</spage><epage>1846</epage><pages>1825-1846</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>We study the numerical approximation of a homogeneous Fredholm integral equation of second kind associated with the Karhunen–Loève expansion of Gaussian random fields. We develop, validate, and discuss an algorithm based on the Galerkin method with two-dimensional Haar wavelets as basis functions. The shape functions are constructed from the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions, and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue system without the explicit calculation of integrals, allowing the implementation of a fast and efficient algorithm that provides considerable reduction in CPU time, when compared with classical Galerkin methods. Numerical experiments confirm the convergence rate of the method and assess the approximation error and the sparsity of the eigenvalue system when the wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem with random input data with the present method. In this problem, accuracy was retained after dropping the coefficients below a threshold value that was numerically determined. A similar method with scaling functions rather than wavelet functions does not need a discrete wavelet transform and leads to eigenvalue systems with better conditioning but lower sparsity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-017-0422-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0101-8205
ispartof Computational & applied mathematics, 2018-05, Vol.37 (2), p.1825-1846
issn 0101-8205
2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2041301867
source Springer Nature
subjects Algorithms
Applications of Mathematics
Applied physics
Approximation
Basis functions
Computational mathematics
Computational Mathematics and Numerical Analysis
Discrete Wavelet Transform
Galerkin method
Integral equations
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Numerical methods
Shape functions
Sparsity
Wavelet transforms
title A Galerkin method with two-dimensional Haar basis functions for the computation of the Karhunen–Loève expansion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Galerkin%20method%20with%20two-dimensional%20Haar%20basis%20functions%20for%20the%20computation%20of%20the%20Karhunen%E2%80%93Lo%C3%A8ve%20expansion&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Azevedo,%20J.%20S.&rft.date=2018-05-01&rft.volume=37&rft.issue=2&rft.spage=1825&rft.epage=1846&rft.pages=1825-1846&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-017-0422-4&rft_dat=%3Cproquest_cross%3E2041301867%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-2a5cf189436f54b710c3af7878033ceb3fe2e9c4fee18c32b25b76c6877c660e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041301867&rft_id=info:pmid/&rfr_iscdi=true