Loading…

A branch and bound algorithm for the robust spanning tree problem with interval data

The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value. Interval numbers model uncertainty about the exact cost valu...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2005-03, Vol.161 (3), p.771-779
Main Authors: Montemanni, R., Gambardella, L.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3
cites cdi_FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3
container_end_page 779
container_issue 3
container_start_page 771
container_title European journal of operational research
container_volume 161
creator Montemanni, R.
Gambardella, L.M.
description The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value. Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization. In this paper a branch and bound algorithm for the robust spanning tree problem is proposed. The method embeds the extension of some results previously presented in the literature and some new elements, such as a new lower bound and some new reduction rules, all based on the exploitation of some peculiarities of the branching strategy adopted. Computational results obtained by the algorithm are presented. The technique we propose is up to 210 faster than methods recently appeared in the literature.
doi_str_mv 10.1016/j.ejor.2003.10.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204134963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221703007045</els_id><sourcerecordid>731667241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3</originalsourceid><addsrcrecordid>eNp9UE1LJDEQDbILzur-AU9B8NhjPro7afAioq4oeHHPIZ2uOGl6utskM-K_32pG3JuBVwXFe1Uvj5Azztac8fqyX0M_xbVgTOJgzZg-IiuulShqXbMfZMWkUoUQXB2TXyn1jDFe8WpFXq5pG-3oNtSOHW2nHVY7vE4x5M2W-inSvAEap3aXMk2zHccwvtIcAeiM0wG29B2pNIwZ4t4OtLPZnpKf3g4Jfn_2E_L37vbl5k_x9Hz_cHP9VLhSyFz4lpeVbJnUXnfSeutqbzvfuEYproUW4NuaVehaghRdU1onS9XyVgjHOg3yhJwf9qKVtx2kbPppF0c8aQQruSybWiJJHEguTilF8GaOYWvjh-HMLOGZ3izhmSW8ZYbhoejxIIowg_tSAD6kQjJ7Iy2vOdYPBEorbAEhETMCv2CUaswmb3HbxadPm5wd_BJ4SP991KVopObIuzrwAEPbB4gmuQCjgy5EcNl0U_jO9D_6CJ6L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204134963</pqid></control><display><type>article</type><title>A branch and bound algorithm for the robust spanning tree problem with interval data</title><source>ScienceDirect Freedom Collection</source><creator>Montemanni, R. ; Gambardella, L.M.</creator><creatorcontrib>Montemanni, R. ; Gambardella, L.M.</creatorcontrib><description>The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value. Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization. In this paper a branch and bound algorithm for the robust spanning tree problem is proposed. The method embeds the extension of some results previously presented in the literature and some new elements, such as a new lower bound and some new reduction rules, all based on the exploitation of some peculiarities of the branching strategy adopted. Computational results obtained by the algorithm are presented. The technique we propose is up to 210 faster than methods recently appeared in the literature.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2003.10.008</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Branch &amp; bound algorithms ; Branch and bound ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Interval data ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimization ; Robust optimization ; Spanning tree problem ; Studies</subject><ispartof>European journal of operational research, 2005-03, Vol.161 (3), p.771-779</ispartof><rights>2003 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. March 16, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3</citedby><cites>FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16429381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a161_3ay_3a2005_3ai_3a3_3ap_3a771-779.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Montemanni, R.</creatorcontrib><creatorcontrib>Gambardella, L.M.</creatorcontrib><title>A branch and bound algorithm for the robust spanning tree problem with interval data</title><title>European journal of operational research</title><description>The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value. Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization. In this paper a branch and bound algorithm for the robust spanning tree problem is proposed. The method embeds the extension of some results previously presented in the literature and some new elements, such as a new lower bound and some new reduction rules, all based on the exploitation of some peculiarities of the branching strategy adopted. Computational results obtained by the algorithm are presented. The technique we propose is up to 210 faster than methods recently appeared in the literature.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Branch &amp; bound algorithms</subject><subject>Branch and bound</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Interval data</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Robust optimization</subject><subject>Spanning tree problem</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LJDEQDbILzur-AU9B8NhjPro7afAioq4oeHHPIZ2uOGl6utskM-K_32pG3JuBVwXFe1Uvj5Azztac8fqyX0M_xbVgTOJgzZg-IiuulShqXbMfZMWkUoUQXB2TXyn1jDFe8WpFXq5pG-3oNtSOHW2nHVY7vE4x5M2W-inSvAEap3aXMk2zHccwvtIcAeiM0wG29B2pNIwZ4t4OtLPZnpKf3g4Jfn_2E_L37vbl5k_x9Hz_cHP9VLhSyFz4lpeVbJnUXnfSeutqbzvfuEYproUW4NuaVehaghRdU1onS9XyVgjHOg3yhJwf9qKVtx2kbPppF0c8aQQruSybWiJJHEguTilF8GaOYWvjh-HMLOGZ3izhmSW8ZYbhoejxIIowg_tSAD6kQjJ7Iy2vOdYPBEorbAEhETMCv2CUaswmb3HbxadPm5wd_BJ4SP991KVopObIuzrwAEPbB4gmuQCjgy5EcNl0U_jO9D_6CJ6L</recordid><startdate>20050316</startdate><enddate>20050316</enddate><creator>Montemanni, R.</creator><creator>Gambardella, L.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050316</creationdate><title>A branch and bound algorithm for the robust spanning tree problem with interval data</title><author>Montemanni, R. ; Gambardella, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Branch &amp; bound algorithms</topic><topic>Branch and bound</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Interval data</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Robust optimization</topic><topic>Spanning tree problem</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montemanni, R.</creatorcontrib><creatorcontrib>Gambardella, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montemanni, R.</au><au>Gambardella, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branch and bound algorithm for the robust spanning tree problem with interval data</atitle><jtitle>European journal of operational research</jtitle><date>2005-03-16</date><risdate>2005</risdate><volume>161</volume><issue>3</issue><spage>771</spage><epage>779</epage><pages>771-779</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value. Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization. In this paper a branch and bound algorithm for the robust spanning tree problem is proposed. The method embeds the extension of some results previously presented in the literature and some new elements, such as a new lower bound and some new reduction rules, all based on the exploitation of some peculiarities of the branching strategy adopted. Computational results obtained by the algorithm are presented. The technique we propose is up to 210 faster than methods recently appeared in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2003.10.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2005-03, Vol.161 (3), p.771-779
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204134963
source ScienceDirect Freedom Collection
subjects Algorithms
Applied sciences
Branch & bound algorithms
Branch and bound
Exact sciences and technology
Flows in networks. Combinatorial problems
Interval data
Operational research and scientific management
Operational research. Management science
Operations research
Optimization
Robust optimization
Spanning tree problem
Studies
title A branch and bound algorithm for the robust spanning tree problem with interval data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branch%20and%20bound%20algorithm%20for%20the%20robust%20spanning%20tree%20problem%20with%20interval%20data&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Montemanni,%20R.&rft.date=2005-03-16&rft.volume=161&rft.issue=3&rft.spage=771&rft.epage=779&rft.pages=771-779&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2003.10.008&rft_dat=%3Cproquest_cross%3E731667241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-fb1453b038f8d3afac6fadf9c97718282efb6052213e32d94ac347b1b22c0d8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204134963&rft_id=info:pmid/&rfr_iscdi=true