Loading…
Stochastic goal programming: A mean–variance approach
We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentiall...
Saved in:
Published in: | European journal of operational research 2001-06, Vol.131 (3), p.476-481 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933 |
container_end_page | 481 |
container_issue | 3 |
container_start_page | 476 |
container_title | European journal of operational research |
container_volume | 131 |
creator | Ballestero, Enrique |
description | We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed. |
doi_str_mv | 10.1016/S0377-2217(00)00084-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204141556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221700000849</els_id><sourcerecordid>73018686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD4-QWhc6aI1z07ajYj4QsGFug7VmZqZDPZ0m7QD7vwH_9AvsXTErYGb2tx7KzmM7Ql-JLiojh-4sraUUtgDzg85506X9RobCWdlWbmKr7PRn2WTbeU8J5MwwoyYfRi6MIM8xFBMO3gu-tRNE7RtXExPirOiRVh8vn8sIUVYBCygJwOE2Q7bmMBzxt3fuc2eLi8ez6_Lu_urm_OzuzJoLocSNLqxasAqCLqurG3QIEyq0HCjtAEwQkxq7awStlFOytq5ho-1leiqulZqm-2vemntyyvmwc-717SglV5yLbQwpiKTWZlC6nJOOPF9ii2kNy-4_0bkfxD57_97zv0PIl9T7naVS9hj-AshnXmXMPulVyCUoPuNJAkajUhSpJ6kbeW1E342tNR2umpD4rGMmHwOEQnaOCYMgx938Z_3fAEgPYYz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204141556</pqid></control><display><type>article</type><title>Stochastic goal programming: A mean–variance approach</title><source>ScienceDirect Journals</source><creator>Ballestero, Enrique</creator><creatorcontrib>Ballestero, Enrique</creatorcontrib><description>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(00)00084-9</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Expected utility ; Expected utility theory ; Goal programming ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2001-06, Vol.131 (3), p.476-481</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 16, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</citedby><cites>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a131_3ay_3a2001_3ai_3a3_3ap_3a476-481.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballestero, Enrique</creatorcontrib><title>Stochastic goal programming: A mean–variance approach</title><title>European journal of operational research</title><description>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</description><subject>Expected utility</subject><subject>Expected utility theory</subject><subject>Goal programming</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD4-QWhc6aI1z07ajYj4QsGFug7VmZqZDPZ0m7QD7vwH_9AvsXTErYGb2tx7KzmM7Ql-JLiojh-4sraUUtgDzg85506X9RobCWdlWbmKr7PRn2WTbeU8J5MwwoyYfRi6MIM8xFBMO3gu-tRNE7RtXExPirOiRVh8vn8sIUVYBCygJwOE2Q7bmMBzxt3fuc2eLi8ez6_Lu_urm_OzuzJoLocSNLqxasAqCLqurG3QIEyq0HCjtAEwQkxq7awStlFOytq5ho-1leiqulZqm-2vemntyyvmwc-717SglV5yLbQwpiKTWZlC6nJOOPF9ii2kNy-4_0bkfxD57_97zv0PIl9T7naVS9hj-AshnXmXMPulVyCUoPuNJAkajUhSpJ6kbeW1E342tNR2umpD4rGMmHwOEQnaOCYMgx938Z_3fAEgPYYz</recordid><startdate>20010616</startdate><enddate>20010616</enddate><creator>Ballestero, Enrique</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010616</creationdate><title>Stochastic goal programming: A mean–variance approach</title><author>Ballestero, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Expected utility</topic><topic>Expected utility theory</topic><topic>Goal programming</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballestero, Enrique</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballestero, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic goal programming: A mean–variance approach</atitle><jtitle>European journal of operational research</jtitle><date>2001-06-16</date><risdate>2001</risdate><volume>131</volume><issue>3</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(00)00084-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2001-06, Vol.131 (3), p.476-481 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204141556 |
source | ScienceDirect Journals |
subjects | Expected utility Expected utility theory Goal programming Stochastic models Studies |
title | Stochastic goal programming: A mean–variance approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20goal%20programming:%20A%20mean%E2%80%93variance%20approach&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Ballestero,%20Enrique&rft.date=2001-06-16&rft.volume=131&rft.issue=3&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(00)00084-9&rft_dat=%3Cproquest_cross%3E73018686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204141556&rft_id=info:pmid/&rfr_iscdi=true |