Loading…

Stochastic goal programming: A mean–variance approach

We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentiall...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2001-06, Vol.131 (3), p.476-481
Main Author: Ballestero, Enrique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933
cites cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933
container_end_page 481
container_issue 3
container_start_page 476
container_title European journal of operational research
container_volume 131
creator Ballestero, Enrique
description We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.
doi_str_mv 10.1016/S0377-2217(00)00084-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204141556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221700000849</els_id><sourcerecordid>73018686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD4-QWhc6aI1z07ajYj4QsGFug7VmZqZDPZ0m7QD7vwH_9AvsXTErYGb2tx7KzmM7Ql-JLiojh-4sraUUtgDzg85506X9RobCWdlWbmKr7PRn2WTbeU8J5MwwoyYfRi6MIM8xFBMO3gu-tRNE7RtXExPirOiRVh8vn8sIUVYBCygJwOE2Q7bmMBzxt3fuc2eLi8ez6_Lu_urm_OzuzJoLocSNLqxasAqCLqurG3QIEyq0HCjtAEwQkxq7awStlFOytq5ho-1leiqulZqm-2vemntyyvmwc-717SglV5yLbQwpiKTWZlC6nJOOPF9ii2kNy-4_0bkfxD57_97zv0PIl9T7naVS9hj-AshnXmXMPulVyCUoPuNJAkajUhSpJ6kbeW1E342tNR2umpD4rGMmHwOEQnaOCYMgx938Z_3fAEgPYYz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204141556</pqid></control><display><type>article</type><title>Stochastic goal programming: A mean–variance approach</title><source>ScienceDirect Journals</source><creator>Ballestero, Enrique</creator><creatorcontrib>Ballestero, Enrique</creatorcontrib><description>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(00)00084-9</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Expected utility ; Expected utility theory ; Goal programming ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2001-06, Vol.131 (3), p.476-481</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 16, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</citedby><cites>FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a131_3ay_3a2001_3ai_3a3_3ap_3a476-481.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballestero, Enrique</creatorcontrib><title>Stochastic goal programming: A mean–variance approach</title><title>European journal of operational research</title><description>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</description><subject>Expected utility</subject><subject>Expected utility theory</subject><subject>Goal programming</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD4-QWhc6aI1z07ajYj4QsGFug7VmZqZDPZ0m7QD7vwH_9AvsXTErYGb2tx7KzmM7Ql-JLiojh-4sraUUtgDzg85506X9RobCWdlWbmKr7PRn2WTbeU8J5MwwoyYfRi6MIM8xFBMO3gu-tRNE7RtXExPirOiRVh8vn8sIUVYBCygJwOE2Q7bmMBzxt3fuc2eLi8ez6_Lu_urm_OzuzJoLocSNLqxasAqCLqurG3QIEyq0HCjtAEwQkxq7awStlFOytq5ho-1leiqulZqm-2vemntyyvmwc-717SglV5yLbQwpiKTWZlC6nJOOPF9ii2kNy-4_0bkfxD57_97zv0PIl9T7naVS9hj-AshnXmXMPulVyCUoPuNJAkajUhSpJ6kbeW1E342tNR2umpD4rGMmHwOEQnaOCYMgx938Z_3fAEgPYYz</recordid><startdate>20010616</startdate><enddate>20010616</enddate><creator>Ballestero, Enrique</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010616</creationdate><title>Stochastic goal programming: A mean–variance approach</title><author>Ballestero, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Expected utility</topic><topic>Expected utility theory</topic><topic>Goal programming</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballestero, Enrique</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballestero, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic goal programming: A mean–variance approach</atitle><jtitle>European journal of operational research</jtitle><date>2001-06-16</date><risdate>2001</risdate><volume>131</volume><issue>3</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We propose a stochastic goal programming (GP) model leading to a structure of mean–variance minimisation. The solution to the stochastic problem is obtained from a linkage between the standard expected utility theory and a strictly linear, weighted GP model under uncertainty. The approach essentially consists in specifying the expected utility equation corresponding to every goal. Arrow's absolute risk aversion coefficients play their role in the calculation process. Once the model is defined and justified, an illustrative example is developed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(00)00084-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2001-06, Vol.131 (3), p.476-481
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204141556
source ScienceDirect Journals
subjects Expected utility
Expected utility theory
Goal programming
Stochastic models
Studies
title Stochastic goal programming: A mean–variance approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20goal%20programming:%20A%20mean%E2%80%93variance%20approach&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Ballestero,%20Enrique&rft.date=2001-06-16&rft.volume=131&rft.issue=3&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(00)00084-9&rft_dat=%3Cproquest_cross%3E73018686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a4e8d3ba73ac49677be5eaf6cb05345aa511f9487317b3822988b0d472e869933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204141556&rft_id=info:pmid/&rfr_iscdi=true