Loading…
Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity
We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting...
Saved in:
Published in: | European journal of operational research 2008-06, Vol.187 (2), p.525-542 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3 |
container_end_page | 542 |
container_issue | 2 |
container_start_page | 525 |
container_title | European journal of operational research |
container_volume | 187 |
creator | Monteiro, Ana Margarida Tütüncü, Reha H. Vicente, Luís N. |
description | We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software.
In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions.
We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function. |
doi_str_mv | 10.1016/j.ejor.2007.02.041 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204143213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707002871</els_id><sourcerecordid>1389669761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</originalsourceid><addsrcrecordid>eNp9UV2L1TAQLaLgdd0_4FMRfGx3kjRtCr7I4he7sCDuc0jT6Zram9Skvez9907tom8GJpOEc87MnGTZGwYlA1ZfjSWOIZYcoCmBl1CxZ9mBqYYXtarheXYA0TQF56x5mb1KaQQAJpk8ZI_f0IYTRucf8ujSz8LjukQz5XMMnenc5JZz3qNPWx5WbxcXfMqHGI55mPfLHJ3FlK9pE7Fr52ye5sl5ejO-z4m8_tH3wXt8MIs7kdjr7MVgpoSXT_kiu__08fv1l-L27vPX6w-3hZVcLEXd8ZpJ0SpUjBkla-AtFxwHOwjJoWskKpCVUIMCAbWqDArDW9MB9jT5IC6yt7suDfRrxbToMazRU0nNyaZKcCYIxHeQjSGliIOmmY4mnjUDvRmsR70ZrDeDNXBNTCLd7KSIM9q_DKRFUEz6pIWhP6D9TEFURcltR4qZQnKpZcX1j-VIau-e-jTJmmmIxluX_vXRtqpRtSTc-x2HZNrJYdTJOvQWexfRLroP7n9N_wa53Kyr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204143213</pqid></control><display><type>article</type><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><source>ScienceDirect Journals</source><creator>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</creator><creatorcontrib>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</creatorcontrib><description>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software.
In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions.
We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.02.041</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cubic splines ; Estimating techniques ; Exact sciences and technology ; Heuristic ; Operational research and scientific management ; Operational research. Management science ; Option pricing ; Portfolio theory ; Probability ; Quadratic programming ; Risk-neutral density estimation ; Securities prices ; Semidefinite programming ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2008-06, Vol.187 (2), p.525-542</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</citedby><cites>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19987865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a187_3ay_3a2008_3ai_3a2_3ap_3a525-542.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, Ana Margarida</creatorcontrib><creatorcontrib>Tütüncü, Reha H.</creatorcontrib><creatorcontrib>Vicente, Luís N.</creatorcontrib><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><title>European journal of operational research</title><description>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software.
In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions.
We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</description><subject>Applied sciences</subject><subject>Cubic splines</subject><subject>Estimating techniques</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Option pricing</subject><subject>Portfolio theory</subject><subject>Probability</subject><subject>Quadratic programming</subject><subject>Risk-neutral density estimation</subject><subject>Securities prices</subject><subject>Semidefinite programming</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UV2L1TAQLaLgdd0_4FMRfGx3kjRtCr7I4he7sCDuc0jT6Zram9Skvez9907tom8GJpOEc87MnGTZGwYlA1ZfjSWOIZYcoCmBl1CxZ9mBqYYXtarheXYA0TQF56x5mb1KaQQAJpk8ZI_f0IYTRucf8ujSz8LjukQz5XMMnenc5JZz3qNPWx5WbxcXfMqHGI55mPfLHJ3FlK9pE7Fr52ye5sl5ejO-z4m8_tH3wXt8MIs7kdjr7MVgpoSXT_kiu__08fv1l-L27vPX6w-3hZVcLEXd8ZpJ0SpUjBkla-AtFxwHOwjJoWskKpCVUIMCAbWqDArDW9MB9jT5IC6yt7suDfRrxbToMazRU0nNyaZKcCYIxHeQjSGliIOmmY4mnjUDvRmsR70ZrDeDNXBNTCLd7KSIM9q_DKRFUEz6pIWhP6D9TEFURcltR4qZQnKpZcX1j-VIau-e-jTJmmmIxluX_vXRtqpRtSTc-x2HZNrJYdTJOvQWexfRLroP7n9N_wa53Kyr</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Monteiro, Ana Margarida</creator><creator>Tütüncü, Reha H.</creator><creator>Vicente, Luís N.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><author>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cubic splines</topic><topic>Estimating techniques</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Option pricing</topic><topic>Portfolio theory</topic><topic>Probability</topic><topic>Quadratic programming</topic><topic>Risk-neutral density estimation</topic><topic>Securities prices</topic><topic>Semidefinite programming</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Ana Margarida</creatorcontrib><creatorcontrib>Tütüncü, Reha H.</creatorcontrib><creatorcontrib>Vicente, Luís N.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Ana Margarida</au><au>Tütüncü, Reha H.</au><au>Vicente, Luís N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</atitle><jtitle>European journal of operational research</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>187</volume><issue>2</issue><spage>525</spage><epage>542</epage><pages>525-542</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software.
In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions.
We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.02.041</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2008-06, Vol.187 (2), p.525-542 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204143213 |
source | ScienceDirect Journals |
subjects | Applied sciences Cubic splines Estimating techniques Exact sciences and technology Heuristic Operational research and scientific management Operational research. Management science Option pricing Portfolio theory Probability Quadratic programming Risk-neutral density estimation Securities prices Semidefinite programming Stochastic models Studies |
title | Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20risk-neutral%20probability%20density%20functions%20from%20options%20prices%20using%20cubic%20splines%20and%20ensuring%20nonnegativity&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Monteiro,%20Ana%20Margarida&rft.date=2008-06-01&rft.volume=187&rft.issue=2&rft.spage=525&rft.epage=542&rft.pages=525-542&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.02.041&rft_dat=%3Cproquest_cross%3E1389669761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204143213&rft_id=info:pmid/&rfr_iscdi=true |