Loading…

Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2008-06, Vol.187 (2), p.525-542
Main Authors: Monteiro, Ana Margarida, Tütüncü, Reha H., Vicente, Luís N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3
cites cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3
container_end_page 542
container_issue 2
container_start_page 525
container_title European journal of operational research
container_volume 187
creator Monteiro, Ana Margarida
Tütüncü, Reha H.
Vicente, Luís N.
description We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software. In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions. We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.
doi_str_mv 10.1016/j.ejor.2007.02.041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204143213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707002871</els_id><sourcerecordid>1389669761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</originalsourceid><addsrcrecordid>eNp9UV2L1TAQLaLgdd0_4FMRfGx3kjRtCr7I4he7sCDuc0jT6Zram9Skvez9907tom8GJpOEc87MnGTZGwYlA1ZfjSWOIZYcoCmBl1CxZ9mBqYYXtarheXYA0TQF56x5mb1KaQQAJpk8ZI_f0IYTRucf8ujSz8LjukQz5XMMnenc5JZz3qNPWx5WbxcXfMqHGI55mPfLHJ3FlK9pE7Fr52ye5sl5ejO-z4m8_tH3wXt8MIs7kdjr7MVgpoSXT_kiu__08fv1l-L27vPX6w-3hZVcLEXd8ZpJ0SpUjBkla-AtFxwHOwjJoWskKpCVUIMCAbWqDArDW9MB9jT5IC6yt7suDfRrxbToMazRU0nNyaZKcCYIxHeQjSGliIOmmY4mnjUDvRmsR70ZrDeDNXBNTCLd7KSIM9q_DKRFUEz6pIWhP6D9TEFURcltR4qZQnKpZcX1j-VIau-e-jTJmmmIxluX_vXRtqpRtSTc-x2HZNrJYdTJOvQWexfRLroP7n9N_wa53Kyr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204143213</pqid></control><display><type>article</type><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><source>ScienceDirect Journals</source><creator>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</creator><creatorcontrib>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</creatorcontrib><description>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software. In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions. We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&amp;P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.02.041</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cubic splines ; Estimating techniques ; Exact sciences and technology ; Heuristic ; Operational research and scientific management ; Operational research. Management science ; Option pricing ; Portfolio theory ; Probability ; Quadratic programming ; Risk-neutral density estimation ; Securities prices ; Semidefinite programming ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2008-06, Vol.187 (2), p.525-542</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</citedby><cites>FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19987865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a187_3ay_3a2008_3ai_3a2_3ap_3a525-542.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, Ana Margarida</creatorcontrib><creatorcontrib>Tütüncü, Reha H.</creatorcontrib><creatorcontrib>Vicente, Luís N.</creatorcontrib><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><title>European journal of operational research</title><description>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software. In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions. We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&amp;P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</description><subject>Applied sciences</subject><subject>Cubic splines</subject><subject>Estimating techniques</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Option pricing</subject><subject>Portfolio theory</subject><subject>Probability</subject><subject>Quadratic programming</subject><subject>Risk-neutral density estimation</subject><subject>Securities prices</subject><subject>Semidefinite programming</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UV2L1TAQLaLgdd0_4FMRfGx3kjRtCr7I4he7sCDuc0jT6Zram9Skvez9907tom8GJpOEc87MnGTZGwYlA1ZfjSWOIZYcoCmBl1CxZ9mBqYYXtarheXYA0TQF56x5mb1KaQQAJpk8ZI_f0IYTRucf8ujSz8LjukQz5XMMnenc5JZz3qNPWx5WbxcXfMqHGI55mPfLHJ3FlK9pE7Fr52ye5sl5ejO-z4m8_tH3wXt8MIs7kdjr7MVgpoSXT_kiu__08fv1l-L27vPX6w-3hZVcLEXd8ZpJ0SpUjBkla-AtFxwHOwjJoWskKpCVUIMCAbWqDArDW9MB9jT5IC6yt7suDfRrxbToMazRU0nNyaZKcCYIxHeQjSGliIOmmY4mnjUDvRmsR70ZrDeDNXBNTCLd7KSIM9q_DKRFUEz6pIWhP6D9TEFURcltR4qZQnKpZcX1j-VIau-e-jTJmmmIxluX_vXRtqpRtSTc-x2HZNrJYdTJOvQWexfRLroP7n9N_wa53Kyr</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Monteiro, Ana Margarida</creator><creator>Tütüncü, Reha H.</creator><creator>Vicente, Luís N.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080601</creationdate><title>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</title><author>Monteiro, Ana Margarida ; Tütüncü, Reha H. ; Vicente, Luís N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cubic splines</topic><topic>Estimating techniques</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Option pricing</topic><topic>Portfolio theory</topic><topic>Probability</topic><topic>Quadratic programming</topic><topic>Risk-neutral density estimation</topic><topic>Securities prices</topic><topic>Semidefinite programming</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Ana Margarida</creatorcontrib><creatorcontrib>Tütüncü, Reha H.</creatorcontrib><creatorcontrib>Vicente, Luís N.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Ana Margarida</au><au>Tütüncü, Reha H.</au><au>Vicente, Luís N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity</atitle><jtitle>European journal of operational research</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>187</volume><issue>2</issue><spage>525</spage><epage>542</epage><pages>525-542</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and determine the corresponding density function, is a convex quadratic or semidefinite programming problem, depending on the formulation. Both of these problems can be efficiently solved by numerical optimization software. In the quadratic programming formulation the positivity of the risk-neutral pdf is heuristically handled by posing linear inequality constraints at the spline nodes. In the other approach, this property of the risk-neutral pdf is rigorously ensured by using a semidefinite programming characterization of nonnegativity for polynomial functions. We tested our approach using data simulated from Black–Scholes option prices and using market data for options on the S&amp;P 500 Index. The numerical results we present show the effectiveness of our methodology for estimating the risk-neutral probability density function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.02.041</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2008-06, Vol.187 (2), p.525-542
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204143213
source ScienceDirect Journals
subjects Applied sciences
Cubic splines
Estimating techniques
Exact sciences and technology
Heuristic
Operational research and scientific management
Operational research. Management science
Option pricing
Portfolio theory
Probability
Quadratic programming
Risk-neutral density estimation
Securities prices
Semidefinite programming
Stochastic models
Studies
title Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20risk-neutral%20probability%20density%20functions%20from%20options%20prices%20using%20cubic%20splines%20and%20ensuring%20nonnegativity&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Monteiro,%20Ana%20Margarida&rft.date=2008-06-01&rft.volume=187&rft.issue=2&rft.spage=525&rft.epage=542&rft.pages=525-542&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.02.041&rft_dat=%3Cproquest_cross%3E1389669761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-6b2615398e811a856029232efcf3520b75e805438f8030684ae3a29ab0ed860f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204143213&rft_id=info:pmid/&rfr_iscdi=true