Loading…

A sampling-based method for generating nondominated solutions in stochastic MOMP problems

This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with p...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2000-11, Vol.126 (3), p.651-661
Main Authors: Ringuest, Jeffrey L., Graves, Samuel B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3
cites cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3
container_end_page 661
container_issue 3
container_start_page 651
container_title European journal of operational research
container_volume 126
creator Ringuest, Jeffrey L.
Graves, Samuel B.
description This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.
doi_str_mv 10.1016/S0377-2217(99)00318-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204147810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221799003185</els_id><sourcerecordid>68440221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpIG7SnxAQPbWHTfSx0u6eign5IgkJJJeehFY7tmW80laSA_n3mdjF1wpezUHvvDN6CDnj7Jwzri9emGyaSgje_Oy6X4xJ3lbqC5nxthGVbjX7SmYHyzH5lvOaMcYVVzPyZ06zHaeND8uqtxkGOkJZxYEuYqJLCJBswTcaYhji6IMtaMlxsy0-hkx9oLlEt7K5eEcfnx6f6ZRiv4Exn5Kjhd1k-P6vnpDX66vXy9vq4enm7nL-ULla1aXqOylbW9eDbnvQnVQOhGpU63onoXa91twKECAt1wN0duEYc3zoGts6XoM8IT_2sTj37xZyMeu4TQEnGsFqXjctZ2hSe5NLMecECzMlP9r0bjgznwzNjqH5BGS6zuwYGoV99_u-BBO4QxPgWccE2bwZ3EtovN9RArFi8SiJmlBacYNfMKsyYtrvfRogjjcPyWTnITgYfAJXzBD9f_b5AAxBk0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204147810</pqid></control><display><type>article</type><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><source>Elsevier</source><creator>Ringuest, Jeffrey L. ; Graves, Samuel B.</creator><creatorcontrib>Ringuest, Jeffrey L. ; Graves, Samuel B.</creatorcontrib><description>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(99)00318-5</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Mathematical programming ; Multicriteria analysis ; Random variables ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2000-11, Vol.126 (3), p.651-661</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</citedby><cites>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a126_3ay_3a2000_3ai_3a3_3ap_3a651-661.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ringuest, Jeffrey L.</creatorcontrib><creatorcontrib>Graves, Samuel B.</creatorcontrib><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><title>European journal of operational research</title><description>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</description><subject>Mathematical programming</subject><subject>Multicriteria analysis</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpIG7SnxAQPbWHTfSx0u6eign5IgkJJJeehFY7tmW80laSA_n3mdjF1wpezUHvvDN6CDnj7Jwzri9emGyaSgje_Oy6X4xJ3lbqC5nxthGVbjX7SmYHyzH5lvOaMcYVVzPyZ06zHaeND8uqtxkGOkJZxYEuYqJLCJBswTcaYhji6IMtaMlxsy0-hkx9oLlEt7K5eEcfnx6f6ZRiv4Exn5Kjhd1k-P6vnpDX66vXy9vq4enm7nL-ULla1aXqOylbW9eDbnvQnVQOhGpU63onoXa91twKECAt1wN0duEYc3zoGts6XoM8IT_2sTj37xZyMeu4TQEnGsFqXjctZ2hSe5NLMecECzMlP9r0bjgznwzNjqH5BGS6zuwYGoV99_u-BBO4QxPgWccE2bwZ3EtovN9RArFi8SiJmlBacYNfMKsyYtrvfRogjjcPyWTnITgYfAJXzBD9f_b5AAxBk0E</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Ringuest, Jeffrey L.</creator><creator>Graves, Samuel B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20001101</creationdate><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><author>Ringuest, Jeffrey L. ; Graves, Samuel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Mathematical programming</topic><topic>Multicriteria analysis</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ringuest, Jeffrey L.</creatorcontrib><creatorcontrib>Graves, Samuel B.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ringuest, Jeffrey L.</au><au>Graves, Samuel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</atitle><jtitle>European journal of operational research</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>126</volume><issue>3</issue><spage>651</spage><epage>661</epage><pages>651-661</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(99)00318-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2000-11, Vol.126 (3), p.651-661
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204147810
source Elsevier
subjects Mathematical programming
Multicriteria analysis
Random variables
Stochastic models
Studies
title A sampling-based method for generating nondominated solutions in stochastic MOMP problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sampling-based%20method%20for%20generating%20nondominated%20solutions%20in%20stochastic%20MOMP%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Ringuest,%20Jeffrey%20L.&rft.date=2000-11-01&rft.volume=126&rft.issue=3&rft.spage=651&rft.epage=661&rft.pages=651-661&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(99)00318-5&rft_dat=%3Cproquest_cross%3E68440221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204147810&rft_id=info:pmid/&rfr_iscdi=true