Loading…
A sampling-based method for generating nondominated solutions in stochastic MOMP problems
This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with p...
Saved in:
Published in: | European journal of operational research 2000-11, Vol.126 (3), p.651-661 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3 |
container_end_page | 661 |
container_issue | 3 |
container_start_page | 651 |
container_title | European journal of operational research |
container_volume | 126 |
creator | Ringuest, Jeffrey L. Graves, Samuel B. |
description | This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters. |
doi_str_mv | 10.1016/S0377-2217(99)00318-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204147810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221799003185</els_id><sourcerecordid>68440221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpIG7SnxAQPbWHTfSx0u6eign5IgkJJJeehFY7tmW80laSA_n3mdjF1wpezUHvvDN6CDnj7Jwzri9emGyaSgje_Oy6X4xJ3lbqC5nxthGVbjX7SmYHyzH5lvOaMcYVVzPyZ06zHaeND8uqtxkGOkJZxYEuYqJLCJBswTcaYhji6IMtaMlxsy0-hkx9oLlEt7K5eEcfnx6f6ZRiv4Exn5Kjhd1k-P6vnpDX66vXy9vq4enm7nL-ULla1aXqOylbW9eDbnvQnVQOhGpU63onoXa91twKECAt1wN0duEYc3zoGts6XoM8IT_2sTj37xZyMeu4TQEnGsFqXjctZ2hSe5NLMecECzMlP9r0bjgznwzNjqH5BGS6zuwYGoV99_u-BBO4QxPgWccE2bwZ3EtovN9RArFi8SiJmlBacYNfMKsyYtrvfRogjjcPyWTnITgYfAJXzBD9f_b5AAxBk0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204147810</pqid></control><display><type>article</type><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><source>Elsevier</source><creator>Ringuest, Jeffrey L. ; Graves, Samuel B.</creator><creatorcontrib>Ringuest, Jeffrey L. ; Graves, Samuel B.</creatorcontrib><description>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(99)00318-5</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Mathematical programming ; Multicriteria analysis ; Random variables ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2000-11, Vol.126 (3), p.651-661</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</citedby><cites>FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a126_3ay_3a2000_3ai_3a3_3ap_3a651-661.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ringuest, Jeffrey L.</creatorcontrib><creatorcontrib>Graves, Samuel B.</creatorcontrib><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><title>European journal of operational research</title><description>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</description><subject>Mathematical programming</subject><subject>Multicriteria analysis</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpIG7SnxAQPbWHTfSx0u6eign5IgkJJJeehFY7tmW80laSA_n3mdjF1wpezUHvvDN6CDnj7Jwzri9emGyaSgje_Oy6X4xJ3lbqC5nxthGVbjX7SmYHyzH5lvOaMcYVVzPyZ06zHaeND8uqtxkGOkJZxYEuYqJLCJBswTcaYhji6IMtaMlxsy0-hkx9oLlEt7K5eEcfnx6f6ZRiv4Exn5Kjhd1k-P6vnpDX66vXy9vq4enm7nL-ULla1aXqOylbW9eDbnvQnVQOhGpU63onoXa91twKECAt1wN0duEYc3zoGts6XoM8IT_2sTj37xZyMeu4TQEnGsFqXjctZ2hSe5NLMecECzMlP9r0bjgznwzNjqH5BGS6zuwYGoV99_u-BBO4QxPgWccE2bwZ3EtovN9RArFi8SiJmlBacYNfMKsyYtrvfRogjjcPyWTnITgYfAJXzBD9f_b5AAxBk0E</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Ringuest, Jeffrey L.</creator><creator>Graves, Samuel B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20001101</creationdate><title>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</title><author>Ringuest, Jeffrey L. ; Graves, Samuel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Mathematical programming</topic><topic>Multicriteria analysis</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ringuest, Jeffrey L.</creatorcontrib><creatorcontrib>Graves, Samuel B.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ringuest, Jeffrey L.</au><au>Graves, Samuel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sampling-based method for generating nondominated solutions in stochastic MOMP problems</atitle><jtitle>European journal of operational research</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>126</volume><issue>3</issue><spage>651</spage><epage>661</epage><pages>651-661</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper presents a method for generating nondominated solutions for stochastic multiobjective mathematical programming problems which is applicable to both continuous and zero–one variables. The method is based on the assumption that the objective function coefficients are random variables with probability distributions that are known or can be approximated. The method results in solutions that are nondominated in terms of the expected value of each objective and the probability that each objective meets or exceeds a specified target value. A method for generating a set of such solutions is presented and illustrated with examples. The paper also discusses computational matters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(99)00318-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2000-11, Vol.126 (3), p.651-661 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204147810 |
source | Elsevier |
subjects | Mathematical programming Multicriteria analysis Random variables Stochastic models Studies |
title | A sampling-based method for generating nondominated solutions in stochastic MOMP problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sampling-based%20method%20for%20generating%20nondominated%20solutions%20in%20stochastic%20MOMP%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Ringuest,%20Jeffrey%20L.&rft.date=2000-11-01&rft.volume=126&rft.issue=3&rft.spage=651&rft.epage=661&rft.pages=651-661&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(99)00318-5&rft_dat=%3Cproquest_cross%3E68440221%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-b9338a44d68be6935ce25758cbc3e4cb661a2e2e3a16de9afc00c1d97a8c14e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204147810&rft_id=info:pmid/&rfr_iscdi=true |