Loading…
A linear matrix inequality approach for robust control of systems with delayed states
This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced sys...
Saved in:
Published in: | European journal of operational research 2000-07, Vol.124 (2), p.332-341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13 |
container_end_page | 341 |
container_issue | 2 |
container_start_page | 332 |
container_title | European journal of operational research |
container_volume | 124 |
creator | Li Da, Xu Cheng, Chuwang Tang, Bingyong |
description | This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities. |
doi_str_mv | 10.1016/S0377-2217(99)00384-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204148039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221799003847</els_id><sourcerecordid>59362673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</originalsourceid><addsrcrecordid>eNqFUE2LFDEQDaLguPoThOBJD61VSbrTfZJl8WNxwYPuOaSTaiZDz6Q3yeza_97MjuzVwEtVwXuvisfYW4SPCNh9-gVS60YI1O-H4QOA7FWjn7EN9lo0Xd_Bc7Z5orxkr3LeAQC22G7Y7SWfw4Fs4ntbUvjD63B3tHMoK7fLkqJ1Wz7FxFMcj7lwFw8lxZnHiec1F9pn_hDKlnua7Uqe52IL5dfsxWTnTG_-1Qt2-_XL76vvzc3Pb9dXlzeNUyBKIy10qFs1knXeOUVTq93Y6VYDje2IzvsRvAUrXUcCx8nj0HcKRZ1xmlBesHdn33ro3ZFyMbt4TIe60ghQqHqQQyW1Z5JLMedEk1lS2Nu0GgRzCtA8BmhO6ZhhMI8BGl11P866RAu5JxHVt4uJsrk30qJQ9V8rRM20lnBqK5YKKWun0GzLvrp9PrtRzeM-UDLZBTo48iGRK8bH8J97_gLO9ZK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204148039</pqid></control><display><type>article</type><title>A linear matrix inequality approach for robust control of systems with delayed states</title><source>ScienceDirect Freedom Collection</source><creator>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</creator><creatorcontrib>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</creatorcontrib><description>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(99)00384-7</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Complexity ; Control ; Control systems ; Mathematical models ; Modeling ; Operations research ; Optimization ; Studies ; Theory</subject><ispartof>European journal of operational research, 2000-07, Vol.124 (2), p.332-341</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 16, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</citedby><cites>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a124_3ay_3a2000_3ai_3a2_3ap_3a332-341.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Li Da, Xu</creatorcontrib><creatorcontrib>Cheng, Chuwang</creatorcontrib><creatorcontrib>Tang, Bingyong</creatorcontrib><title>A linear matrix inequality approach for robust control of systems with delayed states</title><title>European journal of operational research</title><description>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</description><subject>Complexity</subject><subject>Control</subject><subject>Control systems</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFUE2LFDEQDaLguPoThOBJD61VSbrTfZJl8WNxwYPuOaSTaiZDz6Q3yeza_97MjuzVwEtVwXuvisfYW4SPCNh9-gVS60YI1O-H4QOA7FWjn7EN9lo0Xd_Bc7Z5orxkr3LeAQC22G7Y7SWfw4Fs4ntbUvjD63B3tHMoK7fLkqJ1Wz7FxFMcj7lwFw8lxZnHiec1F9pn_hDKlnua7Uqe52IL5dfsxWTnTG_-1Qt2-_XL76vvzc3Pb9dXlzeNUyBKIy10qFs1knXeOUVTq93Y6VYDje2IzvsRvAUrXUcCx8nj0HcKRZ1xmlBesHdn33ro3ZFyMbt4TIe60ghQqHqQQyW1Z5JLMedEk1lS2Nu0GgRzCtA8BmhO6ZhhMI8BGl11P866RAu5JxHVt4uJsrk30qJQ9V8rRM20lnBqK5YKKWun0GzLvrp9PrtRzeM-UDLZBTo48iGRK8bH8J97_gLO9ZK2</recordid><startdate>20000716</startdate><enddate>20000716</enddate><creator>Li Da, Xu</creator><creator>Cheng, Chuwang</creator><creator>Tang, Bingyong</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000716</creationdate><title>A linear matrix inequality approach for robust control of systems with delayed states</title><author>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control systems</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li Da, Xu</creatorcontrib><creatorcontrib>Cheng, Chuwang</creatorcontrib><creatorcontrib>Tang, Bingyong</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li Da, Xu</au><au>Cheng, Chuwang</au><au>Tang, Bingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear matrix inequality approach for robust control of systems with delayed states</atitle><jtitle>European journal of operational research</jtitle><date>2000-07-16</date><risdate>2000</risdate><volume>124</volume><issue>2</issue><spage>332</spage><epage>341</epage><pages>332-341</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(99)00384-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2000-07, Vol.124 (2), p.332-341 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204148039 |
source | ScienceDirect Freedom Collection |
subjects | Complexity Control Control systems Mathematical models Modeling Operations research Optimization Studies Theory |
title | A linear matrix inequality approach for robust control of systems with delayed states |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20matrix%20inequality%20approach%20for%20robust%20control%20of%20systems%20with%20delayed%20states&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Li%20Da,%20Xu&rft.date=2000-07-16&rft.volume=124&rft.issue=2&rft.spage=332&rft.epage=341&rft.pages=332-341&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(99)00384-7&rft_dat=%3Cproquest_cross%3E59362673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204148039&rft_id=info:pmid/&rfr_iscdi=true |