Loading…

A linear matrix inequality approach for robust control of systems with delayed states

This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced sys...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2000-07, Vol.124 (2), p.332-341
Main Authors: Li Da, Xu, Cheng, Chuwang, Tang, Bingyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13
cites cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13
container_end_page 341
container_issue 2
container_start_page 332
container_title European journal of operational research
container_volume 124
creator Li Da, Xu
Cheng, Chuwang
Tang, Bingyong
description This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.
doi_str_mv 10.1016/S0377-2217(99)00384-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204148039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221799003847</els_id><sourcerecordid>59362673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</originalsourceid><addsrcrecordid>eNqFUE2LFDEQDaLguPoThOBJD61VSbrTfZJl8WNxwYPuOaSTaiZDz6Q3yeza_97MjuzVwEtVwXuvisfYW4SPCNh9-gVS60YI1O-H4QOA7FWjn7EN9lo0Xd_Bc7Z5orxkr3LeAQC22G7Y7SWfw4Fs4ntbUvjD63B3tHMoK7fLkqJ1Wz7FxFMcj7lwFw8lxZnHiec1F9pn_hDKlnua7Uqe52IL5dfsxWTnTG_-1Qt2-_XL76vvzc3Pb9dXlzeNUyBKIy10qFs1knXeOUVTq93Y6VYDje2IzvsRvAUrXUcCx8nj0HcKRZ1xmlBesHdn33ro3ZFyMbt4TIe60ghQqHqQQyW1Z5JLMedEk1lS2Nu0GgRzCtA8BmhO6ZhhMI8BGl11P866RAu5JxHVt4uJsrk30qJQ9V8rRM20lnBqK5YKKWun0GzLvrp9PrtRzeM-UDLZBTo48iGRK8bH8J97_gLO9ZK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204148039</pqid></control><display><type>article</type><title>A linear matrix inequality approach for robust control of systems with delayed states</title><source>ScienceDirect Freedom Collection</source><creator>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</creator><creatorcontrib>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</creatorcontrib><description>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(99)00384-7</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Complexity ; Control ; Control systems ; Mathematical models ; Modeling ; Operations research ; Optimization ; Studies ; Theory</subject><ispartof>European journal of operational research, 2000-07, Vol.124 (2), p.332-341</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 16, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</citedby><cites>FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a124_3ay_3a2000_3ai_3a2_3ap_3a332-341.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Li Da, Xu</creatorcontrib><creatorcontrib>Cheng, Chuwang</creatorcontrib><creatorcontrib>Tang, Bingyong</creatorcontrib><title>A linear matrix inequality approach for robust control of systems with delayed states</title><title>European journal of operational research</title><description>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</description><subject>Complexity</subject><subject>Control</subject><subject>Control systems</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFUE2LFDEQDaLguPoThOBJD61VSbrTfZJl8WNxwYPuOaSTaiZDz6Q3yeza_97MjuzVwEtVwXuvisfYW4SPCNh9-gVS60YI1O-H4QOA7FWjn7EN9lo0Xd_Bc7Z5orxkr3LeAQC22G7Y7SWfw4Fs4ntbUvjD63B3tHMoK7fLkqJ1Wz7FxFMcj7lwFw8lxZnHiec1F9pn_hDKlnua7Uqe52IL5dfsxWTnTG_-1Qt2-_XL76vvzc3Pb9dXlzeNUyBKIy10qFs1knXeOUVTq93Y6VYDje2IzvsRvAUrXUcCx8nj0HcKRZ1xmlBesHdn33ro3ZFyMbt4TIe60ghQqHqQQyW1Z5JLMedEk1lS2Nu0GgRzCtA8BmhO6ZhhMI8BGl11P866RAu5JxHVt4uJsrk30qJQ9V8rRM20lnBqK5YKKWun0GzLvrp9PrtRzeM-UDLZBTo48iGRK8bH8J97_gLO9ZK2</recordid><startdate>20000716</startdate><enddate>20000716</enddate><creator>Li Da, Xu</creator><creator>Cheng, Chuwang</creator><creator>Tang, Bingyong</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000716</creationdate><title>A linear matrix inequality approach for robust control of systems with delayed states</title><author>Li Da, Xu ; Cheng, Chuwang ; Tang, Bingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Complexity</topic><topic>Control</topic><topic>Control systems</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li Da, Xu</creatorcontrib><creatorcontrib>Cheng, Chuwang</creatorcontrib><creatorcontrib>Tang, Bingyong</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li Da, Xu</au><au>Cheng, Chuwang</au><au>Tang, Bingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear matrix inequality approach for robust control of systems with delayed states</atitle><jtitle>European journal of operational research</jtitle><date>2000-07-16</date><risdate>2000</risdate><volume>124</volume><issue>2</issue><spage>332</spage><epage>341</epage><pages>332-341</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper addresses the robust stabilization problem for uncertain systems with delayed states. The parameter uncertainties are unknown but norm-bounded and the delay is time-varying. In this study, a linear matrix inequality (LMI) approach for robust stability analysis for the nominal unforced system and a method for robust stabilization for a class of uncertain delay systems via linear memoryless state feedback control are presented. The results depend on the size of the delay and are given in terms of linear matrix inequalities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(99)00384-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2000-07, Vol.124 (2), p.332-341
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204148039
source ScienceDirect Freedom Collection
subjects Complexity
Control
Control systems
Mathematical models
Modeling
Operations research
Optimization
Studies
Theory
title A linear matrix inequality approach for robust control of systems with delayed states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20matrix%20inequality%20approach%20for%20robust%20control%20of%20systems%20with%20delayed%20states&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Li%20Da,%20Xu&rft.date=2000-07-16&rft.volume=124&rft.issue=2&rft.spage=332&rft.epage=341&rft.pages=332-341&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(99)00384-7&rft_dat=%3Cproquest_cross%3E59362673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3a061754beacdcc4ef57cb67570eb5b1cddb0da0a3c6e21bfd19864123c61ff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204148039&rft_id=info:pmid/&rfr_iscdi=true