Loading…

Nodal aggregation of resource constraints in a shortest path problem

The shortest path problem with resource constraints consists of finding the minimum cost path between two specified points while respecting constraints on resource consumption. Its solving by a dynamic programming algorithm requires a computation time increasing with the number of resources. With th...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2006-07, Vol.172 (2), p.500-514
Main Authors: Nagih, Anass, Soumis, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33
cites cdi_FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33
container_end_page 514
container_issue 2
container_start_page 500
container_title European journal of operational research
container_volume 172
creator Nagih, Anass
Soumis, François
description The shortest path problem with resource constraints consists of finding the minimum cost path between two specified points while respecting constraints on resource consumption. Its solving by a dynamic programming algorithm requires a computation time increasing with the number of resources. With the aim of producing rapidly a good heuristic solution we propose to reduce the state space by aggregating resources. Our approach consists of projecting the resources on a vector of smaller dimension and then to dynamically adjust the projection matrix to get a better approximation of the optimal solution. We propose an adjustment based on Lagrangian and surrogate relaxations in a column generation framework, in which the sub-problems are shortest path problems with resource constraints. We adjust the multipliers only one time at each column generation iteration. This permit to obtain good solutions of the scheduling problem in few time.
doi_str_mv 10.1016/j.ejor.2004.09.052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204183611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221704008288</els_id><sourcerecordid>1000848321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33</originalsourceid><addsrcrecordid>eNp9kF9LHDEUxYO04Fb7BfoUCn2cMX8mmQz0RaxWUeyLPoeYudnNsDsZkyj47b3LSvvWwM0N4XfuPRxCvnHWcsb12dTClHIrGOtaNrRMiSOy4qYXjTaafSIrJvu-EYL3x-RLKRNjjCuuVuTXfRrdlrr1OsPa1ZhmmgLNUNJL9kB9mkvNLs610DhTR8sm5Qql0sXVDV1yetrC7pR8Dm5b4OtHPyGPV5cPF9fN3Z_fNxfnd43vhKpNCFLwThvvtcQP4BKkgD48hWF0UmqjjO46o6XopDdGaTP2wwBBBq21QuKEfD_Mxb3PL-jCTmhzxpVWsI4bqTlHSBwgn1MpGYJdcty5_GY5s_uw7GT3Ydl9WJYNFsNC0e1BlGEB_1cBeBCFYl-tdLwXeL9hoVRji_sn1oKlGLOKd3ZTdzjtx4dPV7zbhuxmH8s_H70ywyAH5H4eOMDQXiNkW3yE2cMYM_hqxxT_Z_odC2OX3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204183611</pqid></control><display><type>article</type><title>Nodal aggregation of resource constraints in a shortest path problem</title><source>ScienceDirect Journals</source><creator>Nagih, Anass ; Soumis, François</creator><creatorcontrib>Nagih, Anass ; Soumis, François</creatorcontrib><description>The shortest path problem with resource constraints consists of finding the minimum cost path between two specified points while respecting constraints on resource consumption. Its solving by a dynamic programming algorithm requires a computation time increasing with the number of resources. With the aim of producing rapidly a good heuristic solution we propose to reduce the state space by aggregating resources. Our approach consists of projecting the resources on a vector of smaller dimension and then to dynamically adjust the projection matrix to get a better approximation of the optimal solution. We propose an adjustment based on Lagrangian and surrogate relaxations in a column generation framework, in which the sub-problems are shortest path problems with resource constraints. We adjust the multipliers only one time at each column generation iteration. This permit to obtain good solutions of the scheduling problem in few time.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2004.09.052</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Column generation ; Dynamic programming ; Exact sciences and technology ; Heuristic ; Lagrange multiplier ; Lagrangian relaxation ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Resource aggregation ; Resource constraints ; Scheduling, sequencing ; Shortest path ; Shortest path algorithms ; Studies ; Surrogate relaxation</subject><ispartof>European journal of operational research, 2006-07, Vol.172 (2), p.500-514</ispartof><rights>2004 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 16, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33</citedby><cites>FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17589939$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a172_3ay_3a2006_3ai_3a2_3ap_3a500-514.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Soumis, François</creatorcontrib><title>Nodal aggregation of resource constraints in a shortest path problem</title><title>European journal of operational research</title><description>The shortest path problem with resource constraints consists of finding the minimum cost path between two specified points while respecting constraints on resource consumption. Its solving by a dynamic programming algorithm requires a computation time increasing with the number of resources. With the aim of producing rapidly a good heuristic solution we propose to reduce the state space by aggregating resources. Our approach consists of projecting the resources on a vector of smaller dimension and then to dynamically adjust the projection matrix to get a better approximation of the optimal solution. We propose an adjustment based on Lagrangian and surrogate relaxations in a column generation framework, in which the sub-problems are shortest path problems with resource constraints. We adjust the multipliers only one time at each column generation iteration. This permit to obtain good solutions of the scheduling problem in few time.</description><subject>Applied sciences</subject><subject>Column generation</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Lagrange multiplier</subject><subject>Lagrangian relaxation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Resource aggregation</subject><subject>Resource constraints</subject><subject>Scheduling, sequencing</subject><subject>Shortest path</subject><subject>Shortest path algorithms</subject><subject>Studies</subject><subject>Surrogate relaxation</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LHDEUxYO04Fb7BfoUCn2cMX8mmQz0RaxWUeyLPoeYudnNsDsZkyj47b3LSvvWwM0N4XfuPRxCvnHWcsb12dTClHIrGOtaNrRMiSOy4qYXjTaafSIrJvu-EYL3x-RLKRNjjCuuVuTXfRrdlrr1OsPa1ZhmmgLNUNJL9kB9mkvNLs610DhTR8sm5Qql0sXVDV1yetrC7pR8Dm5b4OtHPyGPV5cPF9fN3Z_fNxfnd43vhKpNCFLwThvvtcQP4BKkgD48hWF0UmqjjO46o6XopDdGaTP2wwBBBq21QuKEfD_Mxb3PL-jCTmhzxpVWsI4bqTlHSBwgn1MpGYJdcty5_GY5s_uw7GT3Ydl9WJYNFsNC0e1BlGEB_1cBeBCFYl-tdLwXeL9hoVRji_sn1oKlGLOKd3ZTdzjtx4dPV7zbhuxmH8s_H70ywyAH5H4eOMDQXiNkW3yE2cMYM_hqxxT_Z_odC2OX3w</recordid><startdate>20060716</startdate><enddate>20060716</enddate><creator>Nagih, Anass</creator><creator>Soumis, François</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060716</creationdate><title>Nodal aggregation of resource constraints in a shortest path problem</title><author>Nagih, Anass ; Soumis, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Column generation</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Lagrange multiplier</topic><topic>Lagrangian relaxation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Resource aggregation</topic><topic>Resource constraints</topic><topic>Scheduling, sequencing</topic><topic>Shortest path</topic><topic>Shortest path algorithms</topic><topic>Studies</topic><topic>Surrogate relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Soumis, François</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagih, Anass</au><au>Soumis, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nodal aggregation of resource constraints in a shortest path problem</atitle><jtitle>European journal of operational research</jtitle><date>2006-07-16</date><risdate>2006</risdate><volume>172</volume><issue>2</issue><spage>500</spage><epage>514</epage><pages>500-514</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The shortest path problem with resource constraints consists of finding the minimum cost path between two specified points while respecting constraints on resource consumption. Its solving by a dynamic programming algorithm requires a computation time increasing with the number of resources. With the aim of producing rapidly a good heuristic solution we propose to reduce the state space by aggregating resources. Our approach consists of projecting the resources on a vector of smaller dimension and then to dynamically adjust the projection matrix to get a better approximation of the optimal solution. We propose an adjustment based on Lagrangian and surrogate relaxations in a column generation framework, in which the sub-problems are shortest path problems with resource constraints. We adjust the multipliers only one time at each column generation iteration. This permit to obtain good solutions of the scheduling problem in few time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2004.09.052</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2006-07, Vol.172 (2), p.500-514
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204183611
source ScienceDirect Journals
subjects Applied sciences
Column generation
Dynamic programming
Exact sciences and technology
Heuristic
Lagrange multiplier
Lagrangian relaxation
Operational research and scientific management
Operational research. Management science
Operations research
Resource aggregation
Resource constraints
Scheduling, sequencing
Shortest path
Shortest path algorithms
Studies
Surrogate relaxation
title Nodal aggregation of resource constraints in a shortest path problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nodal%20aggregation%20of%20resource%20constraints%20in%20a%20shortest%20path%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Nagih,%20Anass&rft.date=2006-07-16&rft.volume=172&rft.issue=2&rft.spage=500&rft.epage=514&rft.pages=500-514&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2004.09.052&rft_dat=%3Cproquest_cross%3E1000848321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-ff321468cc63425e13e32e7fbf9da336858644863243c88568d799ef3f6665a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204183611&rft_id=info:pmid/&rfr_iscdi=true