Loading…
An improved ant colony optimization for vehicle routing problem
The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutat...
Saved in:
Published in: | European journal of operational research 2009-07, Vol.196 (1), p.171-176 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3 |
container_end_page | 176 |
container_issue | 1 |
container_start_page | 171 |
container_title | European journal of operational research |
container_volume | 196 |
creator | Yu, Bin Yang, Zhong-Zhen Yao, Baozhen |
description | The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches. |
doi_str_mv | 10.1016/j.ejor.2008.02.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204195526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221708002373</els_id><sourcerecordid>1605090671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</originalsourceid><addsrcrecordid>eNp9UMGKFDEQDaLguPoDnhrBY89WqmeSNAiyLKsuLnjRc8gk1W6a7k6b9AyMX281s-zRUJUHyXuviifEewlbCVJd91vqU94igNkCcpkXYiONxloZBS_FBhqta0SpX4s3pfQAIPdyvxGfb6YqjnNOJwqVm5bKpyFN5yrNSxzjX7fENFVdytWJHqMfqMrpuMTpd8WSw0DjW_Gqc0Ohd094JX59uft5-61--PH1_vbmofa7Vi41tuhbcoTou4CKAhnQXrnAv0aD0wjBwEGhgSAbDaRaj2HXdZ1zcGhccyU-XHx57p8jlcX26ZgnHmkRdrLd71ExCS8kn1MpmTo75zi6fLYS7JqT7e2ak11zsoBchkXfL6JMM_lnBfFhKhV7so2TreL7zM3SliGuj9zzilpaqZV9XEZ2-_i0pyveDV12k4_l2RUlNmqnNfM-XXjEoZ0iZVt8pMlTiJn8YkOK_1v6H5RCl6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204195526</pqid></control><display><type>article</type><title>An improved ant colony optimization for vehicle routing problem</title><source>ScienceDirect Journals</source><creator>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</creator><creatorcontrib>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</creatorcontrib><description>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2008.02.028</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ant-weight strategy ; Applied sciences ; Benchmarks ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Heuristic ; Improved ant colony optimization ; Logistics ; Mutation operation ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Route optimization ; Routing ; Studies ; Vehicle routing problem ; Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</subject><ispartof>European journal of operational research, 2009-07, Vol.196 (1), p.171-176</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</citedby><cites>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21236477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a196_3ay_3a2009_3ai_3a1_3ap_3a171-176.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Zhong-Zhen</creatorcontrib><creatorcontrib>Yao, Baozhen</creatorcontrib><title>An improved ant colony optimization for vehicle routing problem</title><title>European journal of operational research</title><description>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</description><subject>Ant-weight strategy</subject><subject>Applied sciences</subject><subject>Benchmarks</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Heuristic</subject><subject>Improved ant colony optimization</subject><subject>Logistics</subject><subject>Mutation operation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Route optimization</subject><subject>Routing</subject><subject>Studies</subject><subject>Vehicle routing problem</subject><subject>Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMGKFDEQDaLguPoDnhrBY89WqmeSNAiyLKsuLnjRc8gk1W6a7k6b9AyMX281s-zRUJUHyXuviifEewlbCVJd91vqU94igNkCcpkXYiONxloZBS_FBhqta0SpX4s3pfQAIPdyvxGfb6YqjnNOJwqVm5bKpyFN5yrNSxzjX7fENFVdytWJHqMfqMrpuMTpd8WSw0DjW_Gqc0Ohd094JX59uft5-61--PH1_vbmofa7Vi41tuhbcoTou4CKAhnQXrnAv0aD0wjBwEGhgSAbDaRaj2HXdZ1zcGhccyU-XHx57p8jlcX26ZgnHmkRdrLd71ExCS8kn1MpmTo75zi6fLYS7JqT7e2ak11zsoBchkXfL6JMM_lnBfFhKhV7so2TreL7zM3SliGuj9zzilpaqZV9XEZ2-_i0pyveDV12k4_l2RUlNmqnNfM-XXjEoZ0iZVt8pMlTiJn8YkOK_1v6H5RCl6s</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Yu, Bin</creator><creator>Yang, Zhong-Zhen</creator><creator>Yao, Baozhen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>An improved ant colony optimization for vehicle routing problem</title><author>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ant-weight strategy</topic><topic>Applied sciences</topic><topic>Benchmarks</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Heuristic</topic><topic>Improved ant colony optimization</topic><topic>Logistics</topic><topic>Mutation operation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Route optimization</topic><topic>Routing</topic><topic>Studies</topic><topic>Vehicle routing problem</topic><topic>Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Zhong-Zhen</creatorcontrib><creatorcontrib>Yao, Baozhen</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bin</au><au>Yang, Zhong-Zhen</au><au>Yao, Baozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved ant colony optimization for vehicle routing problem</atitle><jtitle>European journal of operational research</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>196</volume><issue>1</issue><spage>171</spage><epage>176</epage><pages>171-176</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2008.02.028</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2009-07, Vol.196 (1), p.171-176 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204195526 |
source | ScienceDirect Journals |
subjects | Ant-weight strategy Applied sciences Benchmarks Exact sciences and technology Flows in networks. Combinatorial problems Heuristic Improved ant colony optimization Logistics Mutation operation Operational research and scientific management Operational research. Management science Optimization Route optimization Routing Studies Vehicle routing problem Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation |
title | An improved ant colony optimization for vehicle routing problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20ant%20colony%20optimization%20for%20vehicle%20routing%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Yu,%20Bin&rft.date=2009-07-01&rft.volume=196&rft.issue=1&rft.spage=171&rft.epage=176&rft.pages=171-176&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2008.02.028&rft_dat=%3Cproquest_cross%3E1605090671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204195526&rft_id=info:pmid/&rfr_iscdi=true |