Loading…

An improved ant colony optimization for vehicle routing problem

The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutat...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2009-07, Vol.196 (1), p.171-176
Main Authors: Yu, Bin, Yang, Zhong-Zhen, Yao, Baozhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3
cites cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3
container_end_page 176
container_issue 1
container_start_page 171
container_title European journal of operational research
container_volume 196
creator Yu, Bin
Yang, Zhong-Zhen
Yao, Baozhen
description The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.
doi_str_mv 10.1016/j.ejor.2008.02.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204195526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221708002373</els_id><sourcerecordid>1605090671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</originalsourceid><addsrcrecordid>eNp9UMGKFDEQDaLguPoDnhrBY89WqmeSNAiyLKsuLnjRc8gk1W6a7k6b9AyMX281s-zRUJUHyXuviifEewlbCVJd91vqU94igNkCcpkXYiONxloZBS_FBhqta0SpX4s3pfQAIPdyvxGfb6YqjnNOJwqVm5bKpyFN5yrNSxzjX7fENFVdytWJHqMfqMrpuMTpd8WSw0DjW_Gqc0Ohd094JX59uft5-61--PH1_vbmofa7Vi41tuhbcoTou4CKAhnQXrnAv0aD0wjBwEGhgSAbDaRaj2HXdZ1zcGhccyU-XHx57p8jlcX26ZgnHmkRdrLd71ExCS8kn1MpmTo75zi6fLYS7JqT7e2ak11zsoBchkXfL6JMM_lnBfFhKhV7so2TreL7zM3SliGuj9zzilpaqZV9XEZ2-_i0pyveDV12k4_l2RUlNmqnNfM-XXjEoZ0iZVt8pMlTiJn8YkOK_1v6H5RCl6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204195526</pqid></control><display><type>article</type><title>An improved ant colony optimization for vehicle routing problem</title><source>ScienceDirect Journals</source><creator>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</creator><creatorcontrib>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</creatorcontrib><description>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2008.02.028</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ant-weight strategy ; Applied sciences ; Benchmarks ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Heuristic ; Improved ant colony optimization ; Logistics ; Mutation operation ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Route optimization ; Routing ; Studies ; Vehicle routing problem ; Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</subject><ispartof>European journal of operational research, 2009-07, Vol.196 (1), p.171-176</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</citedby><cites>FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21236477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a196_3ay_3a2009_3ai_3a1_3ap_3a171-176.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Zhong-Zhen</creatorcontrib><creatorcontrib>Yao, Baozhen</creatorcontrib><title>An improved ant colony optimization for vehicle routing problem</title><title>European journal of operational research</title><description>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</description><subject>Ant-weight strategy</subject><subject>Applied sciences</subject><subject>Benchmarks</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Heuristic</subject><subject>Improved ant colony optimization</subject><subject>Logistics</subject><subject>Mutation operation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Route optimization</subject><subject>Routing</subject><subject>Studies</subject><subject>Vehicle routing problem</subject><subject>Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMGKFDEQDaLguPoDnhrBY89WqmeSNAiyLKsuLnjRc8gk1W6a7k6b9AyMX281s-zRUJUHyXuviifEewlbCVJd91vqU94igNkCcpkXYiONxloZBS_FBhqta0SpX4s3pfQAIPdyvxGfb6YqjnNOJwqVm5bKpyFN5yrNSxzjX7fENFVdytWJHqMfqMrpuMTpd8WSw0DjW_Gqc0Ohd094JX59uft5-61--PH1_vbmofa7Vi41tuhbcoTou4CKAhnQXrnAv0aD0wjBwEGhgSAbDaRaj2HXdZ1zcGhccyU-XHx57p8jlcX26ZgnHmkRdrLd71ExCS8kn1MpmTo75zi6fLYS7JqT7e2ak11zsoBchkXfL6JMM_lnBfFhKhV7so2TreL7zM3SliGuj9zzilpaqZV9XEZ2-_i0pyveDV12k4_l2RUlNmqnNfM-XXjEoZ0iZVt8pMlTiJn8YkOK_1v6H5RCl6s</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Yu, Bin</creator><creator>Yang, Zhong-Zhen</creator><creator>Yao, Baozhen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>An improved ant colony optimization for vehicle routing problem</title><author>Yu, Bin ; Yang, Zhong-Zhen ; Yao, Baozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ant-weight strategy</topic><topic>Applied sciences</topic><topic>Benchmarks</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Heuristic</topic><topic>Improved ant colony optimization</topic><topic>Logistics</topic><topic>Mutation operation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Route optimization</topic><topic>Routing</topic><topic>Studies</topic><topic>Vehicle routing problem</topic><topic>Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Zhong-Zhen</creatorcontrib><creatorcontrib>Yao, Baozhen</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bin</au><au>Yang, Zhong-Zhen</au><au>Yao, Baozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved ant colony optimization for vehicle routing problem</atitle><jtitle>European journal of operational research</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>196</volume><issue>1</issue><spage>171</spage><epage>176</epage><pages>171-176</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2008.02.028</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2009-07, Vol.196 (1), p.171-176
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204195526
source ScienceDirect Journals
subjects Ant-weight strategy
Applied sciences
Benchmarks
Exact sciences and technology
Flows in networks. Combinatorial problems
Heuristic
Improved ant colony optimization
Logistics
Mutation operation
Operational research and scientific management
Operational research. Management science
Optimization
Route optimization
Routing
Studies
Vehicle routing problem
Vehicle routing problem Improved ant colony optimization Ant-weight strategy Mutation operation
title An improved ant colony optimization for vehicle routing problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20ant%20colony%20optimization%20for%20vehicle%20routing%20problem&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Yu,%20Bin&rft.date=2009-07-01&rft.volume=196&rft.issue=1&rft.spage=171&rft.epage=176&rft.pages=171-176&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2008.02.028&rft_dat=%3Cproquest_cross%3E1605090671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-292c9eae22cfd26ede807c6ad491870a720d80b6280d1370e69c2d4fffaa0b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204195526&rft_id=info:pmid/&rfr_iscdi=true