Loading…

Power cycles integration in concentrated solar power plants with energy storage based on calcium looping

•The use of Calcium-Looping for storage of concentrated solar energy is studied.•Diverse power cycles coupled to the Calcium-Looping process are analysed.•High solar plant efficiency can be achieved using a closed carbon dioxide Brayton cycle. Efficient, low-cost and environmentally friendly storage...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2017-10, Vol.149, p.815-829
Main Authors: Ortiz, C., Chacartegui, R., Valverde, J.M., Alovisio, A., Becerra, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163
cites cdi_FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163
container_end_page 829
container_issue
container_start_page 815
container_title Energy conversion and management
container_volume 149
creator Ortiz, C.
Chacartegui, R.
Valverde, J.M.
Alovisio, A.
Becerra, J.A.
description •The use of Calcium-Looping for storage of concentrated solar energy is studied.•Diverse power cycles coupled to the Calcium-Looping process are analysed.•High solar plant efficiency can be achieved using a closed carbon dioxide Brayton cycle. Efficient, low-cost and environmentally friendly storage of thermal energy stands as a main challenge for large scale deployment of solar energy. This work explores the integration into concentrated solar power plants of the calcium looping process based upon the reversible carbonation/calcination of calcium oxide for thermochemical energy storage. An efficient concentrated solar power-calcium looping integration would allow storing energy in the long term by calcination of calcium carbonate thus overcoming the hurdle of variable power generation from solar. After calcination, the stored products of the reaction (calcium oxide and carbon dioxide) are brought together in a carbonator reactor whereby the high temperature exothermic reaction releases the stored energy for efficient power production when needed. This work analyses several power cycle configurations with the main goal of optimizing the performance of the overall system integration. Possible integration schemes are proposed in which power production is carried out directly (using a closed carbon dioxide Brayton power cycle) or indirectly (by means of a steam reheat Rankine cycle or a supercritical carbon dioxide Brayton cycle). The results obtained show that the highest plant efficiencies (up to 45–46%) are achievable using a closed carbon dioxide Brayton power cycle.
doi_str_mv 10.1016/j.enconman.2017.03.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042231988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890417302418</els_id><sourcerecordid>2042231988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163</originalsourceid><addsrcrecordid>eNqFkE1PxCAQhonRxPXjLxgSz60D3aXlpjF-JSZ60DMBOl3ZdKECq9l_L7p69sSEPM87mZeQMwY1AyYuVjV6G_xa-5oDa2toauByj8xY18qKc97ukxkwKapOwvyQHKW0AoBmAWJG3p7DJ0Zqt3bERJ3PuIw6u-DLTEuqRZ_LB_Y0hVFHOv3g06h9TvTT5TeKHuNyS1MOUS-RGp0KXHyrR-s2azqGMDm_PCEHgx4Tnv6-x-T19ubl-r56fLp7uL56rOy8g1yZVlgmuRbQDINucLHoRG-Mlr2BviCCDUI3lg8Nk9i3ZiE6w00vpRQoDBPNMTnf5U4xvG8wZbUKm-jLSsVhznnxuq5QYkfZGFKKOKgpurWOW8VAfbeqVuqvVfXdqoJGlVaLeLkTsdzw4TCqZF0hsXcRbVZ9cP9FfAHXvoZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042231988</pqid></control><display><type>article</type><title>Power cycles integration in concentrated solar power plants with energy storage based on calcium looping</title><source>Elsevier</source><creator>Ortiz, C. ; Chacartegui, R. ; Valverde, J.M. ; Alovisio, A. ; Becerra, J.A.</creator><creatorcontrib>Ortiz, C. ; Chacartegui, R. ; Valverde, J.M. ; Alovisio, A. ; Becerra, J.A.</creatorcontrib><description>•The use of Calcium-Looping for storage of concentrated solar energy is studied.•Diverse power cycles coupled to the Calcium-Looping process are analysed.•High solar plant efficiency can be achieved using a closed carbon dioxide Brayton cycle. Efficient, low-cost and environmentally friendly storage of thermal energy stands as a main challenge for large scale deployment of solar energy. This work explores the integration into concentrated solar power plants of the calcium looping process based upon the reversible carbonation/calcination of calcium oxide for thermochemical energy storage. An efficient concentrated solar power-calcium looping integration would allow storing energy in the long term by calcination of calcium carbonate thus overcoming the hurdle of variable power generation from solar. After calcination, the stored products of the reaction (calcium oxide and carbon dioxide) are brought together in a carbonator reactor whereby the high temperature exothermic reaction releases the stored energy for efficient power production when needed. This work analyses several power cycle configurations with the main goal of optimizing the performance of the overall system integration. Possible integration schemes are proposed in which power production is carried out directly (using a closed carbon dioxide Brayton power cycle) or indirectly (by means of a steam reheat Rankine cycle or a supercritical carbon dioxide Brayton cycle). The results obtained show that the highest plant efficiencies (up to 45–46%) are achievable using a closed carbon dioxide Brayton power cycle.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2017.03.029</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Brayton cycle ; Calcium ; Calcium carbonate ; Calcium Looping (CaL) ; Calcium oxide ; Carbon cycle ; Carbon dioxide ; Carbonation ; Concentrated Solar Power (CSP) ; Electricity generation ; Energy efficiency ; Energy storage ; Exothermic reactions ; Global warming ; High temperature ; Integration ; Internal energy ; Lime ; Power cycles ; Power plants ; Rankine cycle ; Renewable energies ; Roasting ; Solar energy ; Solar power ; Steam electric power generation ; Stored products ; Studies ; Supercritical CO2 power cycle ; Thermal energy ; Thermochemical Energy Storage (TCES)</subject><ispartof>Energy conversion and management, 2017-10, Vol.149, p.815-829</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163</citedby><cites>FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Alovisio, A.</creatorcontrib><creatorcontrib>Becerra, J.A.</creatorcontrib><title>Power cycles integration in concentrated solar power plants with energy storage based on calcium looping</title><title>Energy conversion and management</title><description>•The use of Calcium-Looping for storage of concentrated solar energy is studied.•Diverse power cycles coupled to the Calcium-Looping process are analysed.•High solar plant efficiency can be achieved using a closed carbon dioxide Brayton cycle. Efficient, low-cost and environmentally friendly storage of thermal energy stands as a main challenge for large scale deployment of solar energy. This work explores the integration into concentrated solar power plants of the calcium looping process based upon the reversible carbonation/calcination of calcium oxide for thermochemical energy storage. An efficient concentrated solar power-calcium looping integration would allow storing energy in the long term by calcination of calcium carbonate thus overcoming the hurdle of variable power generation from solar. After calcination, the stored products of the reaction (calcium oxide and carbon dioxide) are brought together in a carbonator reactor whereby the high temperature exothermic reaction releases the stored energy for efficient power production when needed. This work analyses several power cycle configurations with the main goal of optimizing the performance of the overall system integration. Possible integration schemes are proposed in which power production is carried out directly (using a closed carbon dioxide Brayton power cycle) or indirectly (by means of a steam reheat Rankine cycle or a supercritical carbon dioxide Brayton cycle). The results obtained show that the highest plant efficiencies (up to 45–46%) are achievable using a closed carbon dioxide Brayton power cycle.</description><subject>Brayton cycle</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium Looping (CaL)</subject><subject>Calcium oxide</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbonation</subject><subject>Concentrated Solar Power (CSP)</subject><subject>Electricity generation</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Exothermic reactions</subject><subject>Global warming</subject><subject>High temperature</subject><subject>Integration</subject><subject>Internal energy</subject><subject>Lime</subject><subject>Power cycles</subject><subject>Power plants</subject><subject>Rankine cycle</subject><subject>Renewable energies</subject><subject>Roasting</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Steam electric power generation</subject><subject>Stored products</subject><subject>Studies</subject><subject>Supercritical CO2 power cycle</subject><subject>Thermal energy</subject><subject>Thermochemical Energy Storage (TCES)</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQhonRxPXjLxgSz60D3aXlpjF-JSZ60DMBOl3ZdKECq9l_L7p69sSEPM87mZeQMwY1AyYuVjV6G_xa-5oDa2toauByj8xY18qKc97ukxkwKapOwvyQHKW0AoBmAWJG3p7DJ0Zqt3bERJ3PuIw6u-DLTEuqRZ_LB_Y0hVFHOv3g06h9TvTT5TeKHuNyS1MOUS-RGp0KXHyrR-s2azqGMDm_PCEHgx4Tnv6-x-T19ubl-r56fLp7uL56rOy8g1yZVlgmuRbQDINucLHoRG-Mlr2BviCCDUI3lg8Nk9i3ZiE6w00vpRQoDBPNMTnf5U4xvG8wZbUKm-jLSsVhznnxuq5QYkfZGFKKOKgpurWOW8VAfbeqVuqvVfXdqoJGlVaLeLkTsdzw4TCqZF0hsXcRbVZ9cP9FfAHXvoZ4</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Ortiz, C.</creator><creator>Chacartegui, R.</creator><creator>Valverde, J.M.</creator><creator>Alovisio, A.</creator><creator>Becerra, J.A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171001</creationdate><title>Power cycles integration in concentrated solar power plants with energy storage based on calcium looping</title><author>Ortiz, C. ; Chacartegui, R. ; Valverde, J.M. ; Alovisio, A. ; Becerra, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brayton cycle</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium Looping (CaL)</topic><topic>Calcium oxide</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbonation</topic><topic>Concentrated Solar Power (CSP)</topic><topic>Electricity generation</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Exothermic reactions</topic><topic>Global warming</topic><topic>High temperature</topic><topic>Integration</topic><topic>Internal energy</topic><topic>Lime</topic><topic>Power cycles</topic><topic>Power plants</topic><topic>Rankine cycle</topic><topic>Renewable energies</topic><topic>Roasting</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Steam electric power generation</topic><topic>Stored products</topic><topic>Studies</topic><topic>Supercritical CO2 power cycle</topic><topic>Thermal energy</topic><topic>Thermochemical Energy Storage (TCES)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, C.</creatorcontrib><creatorcontrib>Chacartegui, R.</creatorcontrib><creatorcontrib>Valverde, J.M.</creatorcontrib><creatorcontrib>Alovisio, A.</creatorcontrib><creatorcontrib>Becerra, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, C.</au><au>Chacartegui, R.</au><au>Valverde, J.M.</au><au>Alovisio, A.</au><au>Becerra, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power cycles integration in concentrated solar power plants with energy storage based on calcium looping</atitle><jtitle>Energy conversion and management</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>149</volume><spage>815</spage><epage>829</epage><pages>815-829</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•The use of Calcium-Looping for storage of concentrated solar energy is studied.•Diverse power cycles coupled to the Calcium-Looping process are analysed.•High solar plant efficiency can be achieved using a closed carbon dioxide Brayton cycle. Efficient, low-cost and environmentally friendly storage of thermal energy stands as a main challenge for large scale deployment of solar energy. This work explores the integration into concentrated solar power plants of the calcium looping process based upon the reversible carbonation/calcination of calcium oxide for thermochemical energy storage. An efficient concentrated solar power-calcium looping integration would allow storing energy in the long term by calcination of calcium carbonate thus overcoming the hurdle of variable power generation from solar. After calcination, the stored products of the reaction (calcium oxide and carbon dioxide) are brought together in a carbonator reactor whereby the high temperature exothermic reaction releases the stored energy for efficient power production when needed. This work analyses several power cycle configurations with the main goal of optimizing the performance of the overall system integration. Possible integration schemes are proposed in which power production is carried out directly (using a closed carbon dioxide Brayton power cycle) or indirectly (by means of a steam reheat Rankine cycle or a supercritical carbon dioxide Brayton cycle). The results obtained show that the highest plant efficiencies (up to 45–46%) are achievable using a closed carbon dioxide Brayton power cycle.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2017.03.029</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2017-10, Vol.149, p.815-829
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2042231988
source Elsevier
subjects Brayton cycle
Calcium
Calcium carbonate
Calcium Looping (CaL)
Calcium oxide
Carbon cycle
Carbon dioxide
Carbonation
Concentrated Solar Power (CSP)
Electricity generation
Energy efficiency
Energy storage
Exothermic reactions
Global warming
High temperature
Integration
Internal energy
Lime
Power cycles
Power plants
Rankine cycle
Renewable energies
Roasting
Solar energy
Solar power
Steam electric power generation
Stored products
Studies
Supercritical CO2 power cycle
Thermal energy
Thermochemical Energy Storage (TCES)
title Power cycles integration in concentrated solar power plants with energy storage based on calcium looping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20cycles%20integration%20in%20concentrated%20solar%20power%20plants%20with%20energy%20storage%20based%20on%20calcium%20looping&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Ortiz,%20C.&rft.date=2017-10-01&rft.volume=149&rft.spage=815&rft.epage=829&rft.pages=815-829&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2017.03.029&rft_dat=%3Cproquest_cross%3E2042231988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-b76c192a603ffa3e5586dbba9db0dc4861f6a3c2f319ed7b568b2bd9996e6b163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2042231988&rft_id=info:pmid/&rfr_iscdi=true