Loading…

RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS

For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k , the Schur functor carries this internal tensor product to the usual Kronecker tensor...

Full description

Saved in:
Bibliographic Details
Published in:Transformation groups 2018-06, Vol.23 (2), p.437-461
Main Authors: KULKARNI, UPENDRA, SRIVASTAVA, SHRADDHA, SUBRAHMANYAM, K. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3
cites cdi_FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3
container_end_page 461
container_issue 2
container_start_page 437
container_title Transformation groups
container_volume 23
creator KULKARNI, UPENDRA
SRIVASTAVA, SHRADDHA
SUBRAHMANYAM, K. V.
description For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k , the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g., in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any commutative ring k in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook.
doi_str_mv 10.1007/s00031-018-9481-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2042287598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042287598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwNuC5-jsn2w3xxDXGEg3ZZOAnpZ0kxWLtjVpoX57t1Tw5Gkew--9GV4Q3GK4xwCzhxEAKA4BizBmAoeHs2CCI7-JBH859xoEDRnl5DK4GscVAJ5xzidBrWWR1LnKUC1VVWpU1bpJ60bLCpUKabnwSqraM6XyqyeUSSV1UqAiVzLRKFGPqHqdz2Wt8xRlumwW1XVw4dqPsb_5ndOgeZJ1-hwWZZanSRFaivkujDpCO0agtY66HmjMXEcZw3ZJhX-9FdCJZUSAWhFb3i05IYJZzp3j0Dpr6TS4O-Vuh83Xvh93ZrXZD2t_0hBgnp5FsfAUPlF22Izj0DuzHd4_2-HbYDDH8sypPOPLM8fyzMF7yMkzenb91g9_yf-bfgCqqmrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042287598</pqid></control><display><type>article</type><title>RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS</title><source>Springer Nature</source><creator>KULKARNI, UPENDRA ; SRIVASTAVA, SHRADDHA ; SUBRAHMANYAM, K. V.</creator><creatorcontrib>KULKARNI, UPENDRA ; SRIVASTAVA, SHRADDHA ; SUBRAHMANYAM, K. V.</creatorcontrib><description>For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k , the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g., in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any commutative ring k in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-018-9481-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Group theory ; Homology ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Polynomials ; Representations ; Topological Groups ; Traveling salesman problem</subject><ispartof>Transformation groups, 2018-06, Vol.23 (2), p.437-461</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3</citedby><cites>FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>KULKARNI, UPENDRA</creatorcontrib><creatorcontrib>SRIVASTAVA, SHRADDHA</creatorcontrib><creatorcontrib>SUBRAHMANYAM, K. V.</creatorcontrib><title>RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k , the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g., in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any commutative ring k in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook.</description><subject>Algebra</subject><subject>Group theory</subject><subject>Homology</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Topological Groups</subject><subject>Traveling salesman problem</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxYMoWKsfwNuC5-jsn2w3xxDXGEg3ZZOAnpZ0kxWLtjVpoX57t1Tw5Gkew--9GV4Q3GK4xwCzhxEAKA4BizBmAoeHs2CCI7-JBH859xoEDRnl5DK4GscVAJ5xzidBrWWR1LnKUC1VVWpU1bpJ60bLCpUKabnwSqraM6XyqyeUSSV1UqAiVzLRKFGPqHqdz2Wt8xRlumwW1XVw4dqPsb_5ndOgeZJ1-hwWZZanSRFaivkujDpCO0agtY66HmjMXEcZw3ZJhX-9FdCJZUSAWhFb3i05IYJZzp3j0Dpr6TS4O-Vuh83Xvh93ZrXZD2t_0hBgnp5FsfAUPlF22Izj0DuzHd4_2-HbYDDH8sypPOPLM8fyzMF7yMkzenb91g9_yf-bfgCqqmrc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>KULKARNI, UPENDRA</creator><creator>SRIVASTAVA, SHRADDHA</creator><creator>SUBRAHMANYAM, K. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS</title><author>KULKARNI, UPENDRA ; SRIVASTAVA, SHRADDHA ; SUBRAHMANYAM, K. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Homology</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Topological Groups</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KULKARNI, UPENDRA</creatorcontrib><creatorcontrib>SRIVASTAVA, SHRADDHA</creatorcontrib><creatorcontrib>SUBRAHMANYAM, K. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KULKARNI, UPENDRA</au><au>SRIVASTAVA, SHRADDHA</au><au>SUBRAHMANYAM, K. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>23</volume><issue>2</issue><spage>437</spage><epage>461</epage><pages>437-461</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k , the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g., in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any commutative ring k in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-018-9481-x</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2018-06, Vol.23 (2), p.437-461
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2042287598
source Springer Nature
subjects Algebra
Group theory
Homology
Lie Groups
Mathematics
Mathematics and Statistics
Polynomials
Representations
Topological Groups
Traveling salesman problem
title RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RELATING%20TENSOR%20STRUCTURES%20ON%20REPRESENTATIONS%20OF%20GENERAL%20LINEAR%20AND%20SYMMETRIC%20GROUPS&rft.jtitle=Transformation%20groups&rft.au=KULKARNI,%20UPENDRA&rft.date=2018-06-01&rft.volume=23&rft.issue=2&rft.spage=437&rft.epage=461&rft.pages=437-461&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-018-9481-x&rft_dat=%3Cproquest_cross%3E2042287598%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-5d23d420acf3fe0394fd3441cb38531a80d8b5203c89c6db62284c66ff60afcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2042287598&rft_id=info:pmid/&rfr_iscdi=true