Loading…

Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji

Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data w...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2017-11, Vol.97, p.271-286
Main Authors: Lau, Colleen L., Mayfield, Helen J., Lowry, John H., Watson, Conall H., Kama, Mike, Nilles, Eric J., Smith, Carl S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933
cites cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933
container_end_page 286
container_issue
container_start_page 271
container_title Environmental modelling & software : with environment data news
container_volume 97
creator Lau, Colleen L.
Mayfield, Helen J.
Lowry, John H.
Watson, Conall H.
Kama, Mike
Nilles, Eric J.
Smith, Carl S.
description Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies. •Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.
doi_str_mv 10.1016/j.envsoft.2017.08.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815217302220</els_id><sourcerecordid>2043336051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</originalsourceid><addsrcrecordid>eNqFkMtq3TAQhk1poWnaRygIurYjWfJF3YQ05AaBbJK10JHGYVxHcjT2Kd73waPDyT6rmWH--WfmK4qfgleCi_ZsrCDsKQ5LVXPRVbyvOFefihPRd7Jsu7r9nHPZqrIXTf21-EY0cs5zrk6K_08h2T1ME4ZnhmEAt2BciXkksAQMXCxhRg8vGKf4vLGVDso_dgNCG1iA5V9Mf4nZ4Bk5CDZhzIWdNkL6zS6YO9jQsvqNxYFNMC-RZkwxt_NCdo0jfi--DHYi-PEeT4un66vHy9vy_uHm7vLivnSyV0s5dKKTtdS17m2r-8bVztfCO6VVD6AHuRN-t9Ned60E6DohFVcSnG00V1xLeVr8OvrOKb6uQIsZ45ryrWTqrJSy5Y3IquaocvlISjCYOeGLTZsR3ByAm9G8AzcH4Ib3JgPPc-fHOcgv7BGSIYcQHHhMGavxET9weAOewY6p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336051</pqid></control><display><type>article</type><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><source>Elsevier</source><creator>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</creator><creatorcontrib>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</creatorcontrib><description>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies. •Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.08.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animal species ; Bayesian analysis ; Bayesian networks ; Case studies ; Complexity ; Disease control ; Disease transmission ; Environmental health ; Epidemiology ; Infectious diseases ; Infectious diseases epidemiology ; Leptospirosis ; Mathematical models ; Minority &amp; ethnic groups ; Modelling ; Public health ; Regression analysis ; Regression models ; Subgroups ; Zoonoses</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2017-11, Vol.97, p.271-286</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</citedby><cites>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</cites><orcidid>0000-0002-2469-791X ; 0000-0001-7044-5257 ; 0000-0003-3462-4324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lau, Colleen L.</creatorcontrib><creatorcontrib>Mayfield, Helen J.</creatorcontrib><creatorcontrib>Lowry, John H.</creatorcontrib><creatorcontrib>Watson, Conall H.</creatorcontrib><creatorcontrib>Kama, Mike</creatorcontrib><creatorcontrib>Nilles, Eric J.</creatorcontrib><creatorcontrib>Smith, Carl S.</creatorcontrib><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><title>Environmental modelling &amp; software : with environment data news</title><description>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies. •Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</description><subject>Animal species</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Case studies</subject><subject>Complexity</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Environmental health</subject><subject>Epidemiology</subject><subject>Infectious diseases</subject><subject>Infectious diseases epidemiology</subject><subject>Leptospirosis</subject><subject>Mathematical models</subject><subject>Minority &amp; ethnic groups</subject><subject>Modelling</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Subgroups</subject><subject>Zoonoses</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtq3TAQhk1poWnaRygIurYjWfJF3YQ05AaBbJK10JHGYVxHcjT2Kd73waPDyT6rmWH--WfmK4qfgleCi_ZsrCDsKQ5LVXPRVbyvOFefihPRd7Jsu7r9nHPZqrIXTf21-EY0cs5zrk6K_08h2T1ME4ZnhmEAt2BciXkksAQMXCxhRg8vGKf4vLGVDso_dgNCG1iA5V9Mf4nZ4Bk5CDZhzIWdNkL6zS6YO9jQsvqNxYFNMC-RZkwxt_NCdo0jfi--DHYi-PEeT4un66vHy9vy_uHm7vLivnSyV0s5dKKTtdS17m2r-8bVztfCO6VVD6AHuRN-t9Ned60E6DohFVcSnG00V1xLeVr8OvrOKb6uQIsZ45ryrWTqrJSy5Y3IquaocvlISjCYOeGLTZsR3ByAm9G8AzcH4Ib3JgPPc-fHOcgv7BGSIYcQHHhMGavxET9weAOewY6p</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Lau, Colleen L.</creator><creator>Mayfield, Helen J.</creator><creator>Lowry, John H.</creator><creator>Watson, Conall H.</creator><creator>Kama, Mike</creator><creator>Nilles, Eric J.</creator><creator>Smith, Carl S.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2469-791X</orcidid><orcidid>https://orcid.org/0000-0001-7044-5257</orcidid><orcidid>https://orcid.org/0000-0003-3462-4324</orcidid></search><sort><creationdate>20171101</creationdate><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><author>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal species</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Case studies</topic><topic>Complexity</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Environmental health</topic><topic>Epidemiology</topic><topic>Infectious diseases</topic><topic>Infectious diseases epidemiology</topic><topic>Leptospirosis</topic><topic>Mathematical models</topic><topic>Minority &amp; ethnic groups</topic><topic>Modelling</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Subgroups</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Colleen L.</creatorcontrib><creatorcontrib>Mayfield, Helen J.</creatorcontrib><creatorcontrib>Lowry, John H.</creatorcontrib><creatorcontrib>Watson, Conall H.</creatorcontrib><creatorcontrib>Kama, Mike</creatorcontrib><creatorcontrib>Nilles, Eric J.</creatorcontrib><creatorcontrib>Smith, Carl S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Colleen L.</au><au>Mayfield, Helen J.</au><au>Lowry, John H.</au><au>Watson, Conall H.</au><au>Kama, Mike</au><au>Nilles, Eric J.</au><au>Smith, Carl S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>97</volume><spage>271</spage><epage>286</epage><pages>271-286</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies. •Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.08.004</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2469-791X</orcidid><orcidid>https://orcid.org/0000-0001-7044-5257</orcidid><orcidid>https://orcid.org/0000-0003-3462-4324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.271-286
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2043336051
source Elsevier
subjects Animal species
Bayesian analysis
Bayesian networks
Case studies
Complexity
Disease control
Disease transmission
Environmental health
Epidemiology
Infectious diseases
Infectious diseases epidemiology
Leptospirosis
Mathematical models
Minority & ethnic groups
Modelling
Public health
Regression analysis
Regression models
Subgroups
Zoonoses
title Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20infectious%20disease%20eco-epidemiology%20using%20Bayesian%20networks%20and%20scenario%20analysis:%20A%20case%20study%20of%20leptospirosis%20in%20Fiji&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Lau,%20Colleen%20L.&rft.date=2017-11-01&rft.volume=97&rft.spage=271&rft.epage=286&rft.pages=271-286&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.08.004&rft_dat=%3Cproquest_cross%3E2043336051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043336051&rft_id=info:pmid/&rfr_iscdi=true