Loading…
Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji
Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data w...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2017-11, Vol.97, p.271-286 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933 |
container_end_page | 286 |
container_issue | |
container_start_page | 271 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 97 |
creator | Lau, Colleen L. Mayfield, Helen J. Lowry, John H. Watson, Conall H. Kama, Mike Nilles, Eric J. Smith, Carl S. |
description | Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies.
•Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology. |
doi_str_mv | 10.1016/j.envsoft.2017.08.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043336051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815217302220</els_id><sourcerecordid>2043336051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</originalsourceid><addsrcrecordid>eNqFkMtq3TAQhk1poWnaRygIurYjWfJF3YQ05AaBbJK10JHGYVxHcjT2Kd73waPDyT6rmWH--WfmK4qfgleCi_ZsrCDsKQ5LVXPRVbyvOFefihPRd7Jsu7r9nHPZqrIXTf21-EY0cs5zrk6K_08h2T1ME4ZnhmEAt2BciXkksAQMXCxhRg8vGKf4vLGVDso_dgNCG1iA5V9Mf4nZ4Bk5CDZhzIWdNkL6zS6YO9jQsvqNxYFNMC-RZkwxt_NCdo0jfi--DHYi-PEeT4un66vHy9vy_uHm7vLivnSyV0s5dKKTtdS17m2r-8bVztfCO6VVD6AHuRN-t9Ned60E6DohFVcSnG00V1xLeVr8OvrOKb6uQIsZ45ryrWTqrJSy5Y3IquaocvlISjCYOeGLTZsR3ByAm9G8AzcH4Ib3JgPPc-fHOcgv7BGSIYcQHHhMGavxET9weAOewY6p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043336051</pqid></control><display><type>article</type><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><source>Elsevier</source><creator>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</creator><creatorcontrib>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</creatorcontrib><description>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies.
•Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2017.08.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animal species ; Bayesian analysis ; Bayesian networks ; Case studies ; Complexity ; Disease control ; Disease transmission ; Environmental health ; Epidemiology ; Infectious diseases ; Infectious diseases epidemiology ; Leptospirosis ; Mathematical models ; Minority & ethnic groups ; Modelling ; Public health ; Regression analysis ; Regression models ; Subgroups ; Zoonoses</subject><ispartof>Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.271-286</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</citedby><cites>FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</cites><orcidid>0000-0002-2469-791X ; 0000-0001-7044-5257 ; 0000-0003-3462-4324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lau, Colleen L.</creatorcontrib><creatorcontrib>Mayfield, Helen J.</creatorcontrib><creatorcontrib>Lowry, John H.</creatorcontrib><creatorcontrib>Watson, Conall H.</creatorcontrib><creatorcontrib>Kama, Mike</creatorcontrib><creatorcontrib>Nilles, Eric J.</creatorcontrib><creatorcontrib>Smith, Carl S.</creatorcontrib><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><title>Environmental modelling & software : with environment data news</title><description>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies.
•Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</description><subject>Animal species</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Case studies</subject><subject>Complexity</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Environmental health</subject><subject>Epidemiology</subject><subject>Infectious diseases</subject><subject>Infectious diseases epidemiology</subject><subject>Leptospirosis</subject><subject>Mathematical models</subject><subject>Minority & ethnic groups</subject><subject>Modelling</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Subgroups</subject><subject>Zoonoses</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtq3TAQhk1poWnaRygIurYjWfJF3YQ05AaBbJK10JHGYVxHcjT2Kd73waPDyT6rmWH--WfmK4qfgleCi_ZsrCDsKQ5LVXPRVbyvOFefihPRd7Jsu7r9nHPZqrIXTf21-EY0cs5zrk6K_08h2T1ME4ZnhmEAt2BciXkksAQMXCxhRg8vGKf4vLGVDso_dgNCG1iA5V9Mf4nZ4Bk5CDZhzIWdNkL6zS6YO9jQsvqNxYFNMC-RZkwxt_NCdo0jfi--DHYi-PEeT4un66vHy9vy_uHm7vLivnSyV0s5dKKTtdS17m2r-8bVztfCO6VVD6AHuRN-t9Ned60E6DohFVcSnG00V1xLeVr8OvrOKb6uQIsZ45ryrWTqrJSy5Y3IquaocvlISjCYOeGLTZsR3ByAm9G8AzcH4Ib3JgPPc-fHOcgv7BGSIYcQHHhMGavxET9weAOewY6p</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Lau, Colleen L.</creator><creator>Mayfield, Helen J.</creator><creator>Lowry, John H.</creator><creator>Watson, Conall H.</creator><creator>Kama, Mike</creator><creator>Nilles, Eric J.</creator><creator>Smith, Carl S.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2469-791X</orcidid><orcidid>https://orcid.org/0000-0001-7044-5257</orcidid><orcidid>https://orcid.org/0000-0003-3462-4324</orcidid></search><sort><creationdate>20171101</creationdate><title>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</title><author>Lau, Colleen L. ; Mayfield, Helen J. ; Lowry, John H. ; Watson, Conall H. ; Kama, Mike ; Nilles, Eric J. ; Smith, Carl S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal species</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Case studies</topic><topic>Complexity</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Environmental health</topic><topic>Epidemiology</topic><topic>Infectious diseases</topic><topic>Infectious diseases epidemiology</topic><topic>Leptospirosis</topic><topic>Mathematical models</topic><topic>Minority & ethnic groups</topic><topic>Modelling</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Subgroups</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Colleen L.</creatorcontrib><creatorcontrib>Mayfield, Helen J.</creatorcontrib><creatorcontrib>Lowry, John H.</creatorcontrib><creatorcontrib>Watson, Conall H.</creatorcontrib><creatorcontrib>Kama, Mike</creatorcontrib><creatorcontrib>Nilles, Eric J.</creatorcontrib><creatorcontrib>Smith, Carl S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Colleen L.</au><au>Mayfield, Helen J.</au><au>Lowry, John H.</au><au>Watson, Conall H.</au><au>Kama, Mike</au><au>Nilles, Eric J.</au><au>Smith, Carl S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>97</volume><spage>271</spage><epage>286</epage><pages>271-286</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Regression models are the standard approaches used in infectious disease epidemiology, but have limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an alternative approach for modelling infectious disease transmission, using leptospirosis as an example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the performance of naïve versus expert-structured BNs for modelling the relative importance of animal species in disease transmission in different ethnic groups and residential settings. For BNs of animal exposures at the individual/household level, R2 for predicted versus observed infection rates were 0.59 for naïve and 0.75–0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93–1.00 for structured models of residential settings. BNs provide a promising approach for modelling infectious disease transmission under complex scenarios. The relative importance of animal species varied between subgroups, with important implications for more targeted public health control strategies.
•Bayesian networks are a promising approach for modelling infectious diseases .•Models that represent causality perform better.•Model that account for dependencies between predictor variables perform better.•Bayesian networks are useful for predicting outcomes under complex scenarios .•Causal models provide important insights into eco-epidemiology.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2017.08.004</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2469-791X</orcidid><orcidid>https://orcid.org/0000-0001-7044-5257</orcidid><orcidid>https://orcid.org/0000-0003-3462-4324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2017-11, Vol.97, p.271-286 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2043336051 |
source | Elsevier |
subjects | Animal species Bayesian analysis Bayesian networks Case studies Complexity Disease control Disease transmission Environmental health Epidemiology Infectious diseases Infectious diseases epidemiology Leptospirosis Mathematical models Minority & ethnic groups Modelling Public health Regression analysis Regression models Subgroups Zoonoses |
title | Unravelling infectious disease eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20infectious%20disease%20eco-epidemiology%20using%20Bayesian%20networks%20and%20scenario%20analysis:%20A%20case%20study%20of%20leptospirosis%20in%20Fiji&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Lau,%20Colleen%20L.&rft.date=2017-11-01&rft.volume=97&rft.spage=271&rft.epage=286&rft.pages=271-286&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2017.08.004&rft_dat=%3Cproquest_cross%3E2043336051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-f7173239298a6985c2cd21dc4948ee9f3b1dbb9d9763ee77134043eca59040933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043336051&rft_id=info:pmid/&rfr_iscdi=true |