Loading…

Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics

In this paper we explore to what extent text parameters, such as average number of words per sentence, syllables per word, nouns per sentence, frequency of content words, etc. can successfully rank Russian academic texts for different age and grade levels. We provide a brief overview of previous res...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2018-01, Vol.34 (5), p.3049-3058
Main Authors: Solovyev, Valery, Ivanov, Vladimir, Solnyshkina, Marina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3
cites cdi_FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3
container_end_page 3058
container_issue 5
container_start_page 3049
container_title Journal of intelligent & fuzzy systems
container_volume 34
creator Solovyev, Valery
Ivanov, Vladimir
Solnyshkina, Marina
description In this paper we explore to what extent text parameters, such as average number of words per sentence, syllables per word, nouns per sentence, frequency of content words, etc. can successfully rank Russian academic texts for different age and grade levels. We provide a brief overview of previous research on readability of Russian texts and describe the corpus of school textbooks on Social Studies (from 5-th to 11-th grade) compiled by the authors. We share our experience of using a variety of quantitative text complexity metrics and evaluate the measures of existing Russian text complexity formulas. Based on the tests of a set of extended text features, we propose one innovative metric for better prediction of Russian text complexity, i.e. the number of adjectives. As the results obtained compare favorably with the previously published results on the established complexity metrics for Russian texts, the study encourages the development of valid, reliable and transparent complexity tools for Russian texts.
doi_str_mv 10.3233/JIFS-169489
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043678338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043678338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm83HeivFaqUg-HHwtGSTN5qy3a15d8X-e7fU08xhmBkeQi45uxG5ELdPy8VrxlVZmPKITLjRMjOl0sejZ6rIeF6oU3KGuGaMa5mzCfmYIQLiBtqedoEmsD62n9THEKIbmn5HG_iBBmls6cuAGG1LrbMeNtHRHn57vKOz7TZ11n0BUtt6uoE-RYfn5CTYBuHiX6fkfXH_Nn_MVs8Py_lslblc8T7zUvBQB-1HMYE7a8GHWtZKSq5VaUsvtRYcXCEZk75UuZTOQa2EMUFbL6bk6tA7nvgeAPtq3Q2pHSernBVCaSOEGVPXh5RLHWKCUG1T3Ni0qzir9uyqPbvqwE78ASHAYnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043678338</pqid></control><display><type>article</type><title>Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics</title><source>Business Source Ultimate</source><creator>Solovyev, Valery ; Ivanov, Vladimir ; Solnyshkina, Marina</creator><contributor>Stamatatos, Efstathios ; Pinto, David ; Singh, Vivek Kumar ; Mayr-Schlegel, Philipp ; Villavicencio, Aline</contributor><creatorcontrib>Solovyev, Valery ; Ivanov, Vladimir ; Solnyshkina, Marina ; Stamatatos, Efstathios ; Pinto, David ; Singh, Vivek Kumar ; Mayr-Schlegel, Philipp ; Villavicencio, Aline</creatorcontrib><description>In this paper we explore to what extent text parameters, such as average number of words per sentence, syllables per word, nouns per sentence, frequency of content words, etc. can successfully rank Russian academic texts for different age and grade levels. We provide a brief overview of previous research on readability of Russian texts and describe the corpus of school textbooks on Social Studies (from 5-th to 11-th grade) compiled by the authors. We share our experience of using a variety of quantitative text complexity metrics and evaluate the measures of existing Russian text complexity formulas. Based on the tests of a set of extended text features, we propose one innovative metric for better prediction of Russian text complexity, i.e. the number of adjectives. As the results obtained compare favorably with the previously published results on the established complexity metrics for Russian texts, the study encourages the development of valid, reliable and transparent complexity tools for Russian texts.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169489</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Complexity ; Syllables ; Textbooks ; Texts</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2018-01, Vol.34 (5), p.3049-3058</ispartof><rights>Copyright IOS Press BV 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3</citedby><cites>FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Stamatatos, Efstathios</contributor><contributor>Pinto, David</contributor><contributor>Singh, Vivek Kumar</contributor><contributor>Mayr-Schlegel, Philipp</contributor><contributor>Villavicencio, Aline</contributor><creatorcontrib>Solovyev, Valery</creatorcontrib><creatorcontrib>Ivanov, Vladimir</creatorcontrib><creatorcontrib>Solnyshkina, Marina</creatorcontrib><title>Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper we explore to what extent text parameters, such as average number of words per sentence, syllables per word, nouns per sentence, frequency of content words, etc. can successfully rank Russian academic texts for different age and grade levels. We provide a brief overview of previous research on readability of Russian texts and describe the corpus of school textbooks on Social Studies (from 5-th to 11-th grade) compiled by the authors. We share our experience of using a variety of quantitative text complexity metrics and evaluate the measures of existing Russian text complexity formulas. Based on the tests of a set of extended text features, we propose one innovative metric for better prediction of Russian text complexity, i.e. the number of adjectives. As the results obtained compare favorably with the previously published results on the established complexity metrics for Russian texts, the study encourages the development of valid, reliable and transparent complexity tools for Russian texts.</description><subject>Complexity</subject><subject>Syllables</subject><subject>Textbooks</subject><subject>Texts</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm83HeivFaqUg-HHwtGSTN5qy3a15d8X-e7fU08xhmBkeQi45uxG5ELdPy8VrxlVZmPKITLjRMjOl0sejZ6rIeF6oU3KGuGaMa5mzCfmYIQLiBtqedoEmsD62n9THEKIbmn5HG_iBBmls6cuAGG1LrbMeNtHRHn57vKOz7TZ11n0BUtt6uoE-RYfn5CTYBuHiX6fkfXH_Nn_MVs8Py_lslblc8T7zUvBQB-1HMYE7a8GHWtZKSq5VaUsvtRYcXCEZk75UuZTOQa2EMUFbL6bk6tA7nvgeAPtq3Q2pHSernBVCaSOEGVPXh5RLHWKCUG1T3Ni0qzir9uyqPbvqwE78ASHAYnY</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Solovyev, Valery</creator><creator>Ivanov, Vladimir</creator><creator>Solnyshkina, Marina</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics</title><author>Solovyev, Valery ; Ivanov, Vladimir ; Solnyshkina, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complexity</topic><topic>Syllables</topic><topic>Textbooks</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovyev, Valery</creatorcontrib><creatorcontrib>Ivanov, Vladimir</creatorcontrib><creatorcontrib>Solnyshkina, Marina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovyev, Valery</au><au>Ivanov, Vladimir</au><au>Solnyshkina, Marina</au><au>Stamatatos, Efstathios</au><au>Pinto, David</au><au>Singh, Vivek Kumar</au><au>Mayr-Schlegel, Philipp</au><au>Villavicencio, Aline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>3049</spage><epage>3058</epage><pages>3049-3058</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper we explore to what extent text parameters, such as average number of words per sentence, syllables per word, nouns per sentence, frequency of content words, etc. can successfully rank Russian academic texts for different age and grade levels. We provide a brief overview of previous research on readability of Russian texts and describe the corpus of school textbooks on Social Studies (from 5-th to 11-th grade) compiled by the authors. We share our experience of using a variety of quantitative text complexity metrics and evaluate the measures of existing Russian text complexity formulas. Based on the tests of a set of extended text features, we propose one innovative metric for better prediction of Russian text complexity, i.e. the number of adjectives. As the results obtained compare favorably with the previously published results on the established complexity metrics for Russian texts, the study encourages the development of valid, reliable and transparent complexity tools for Russian texts.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169489</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2018-01, Vol.34 (5), p.3049-3058
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2043678338
source Business Source Ultimate
subjects Complexity
Syllables
Textbooks
Texts
title Assessment of reading difficulty levels in Russian academic texts: Approaches and metrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20reading%20difficulty%20levels%20in%20Russian%20academic%20texts:%20Approaches%20and%20metrics&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Solovyev,%20Valery&rft.date=2018-01-01&rft.volume=34&rft.issue=5&rft.spage=3049&rft.epage=3058&rft.pages=3049-3058&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169489&rft_dat=%3Cproquest_cross%3E2043678338%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-d531fbf7d31f8f1caaedfb5b6551769a9d57731ec45005d96255cceb6388f7ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043678338&rft_id=info:pmid/&rfr_iscdi=true