Loading…

A Discrete–Continuous Routing Problem with Precedence Constraints

We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence constraints and a possible dependence of the cost function on a set of tasks. We study a variant of the approximate realization of the extremum by applying models that invol...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Steklov Institute of Mathematics 2018-04, Vol.300 (Suppl 1), p.56-71
Main Authors: Chentsov, A. G., Chentsov, A. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-96c95469f3eb44c762a7a505162d5229505a0770c51baa4137f50b267fdaf2c53
container_end_page 71
container_issue Suppl 1
container_start_page 56
container_title Proceedings of the Steklov Institute of Mathematics
container_volume 300
creator Chentsov, A. G.
Chentsov, A. A.
description We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence constraints and a possible dependence of the cost function on a set of tasks. We study a variant of the approximate realization of the extremum by applying models that involve problems of sequential visits to megalopolises (nonempty finite sets). This variant is naturally embedded into a more general construction that implements sequential visits to nonempty closed sets (NCSs) from a finite system in a metrizable compact space. The space of NCSs is equipped with the Hausdorff metric, which is used to estimate (under the corresponding condition that the sections of the cost functions are continuous) the proximity of the extrema in the problem of sequential visits for any two systems of NCSs (it is assumed that the numbers or NCSs in the systems are the same). The constraints in the form of precedence constraints are preserved in this variant.
doi_str_mv 10.1134/S0081543818020074
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2043794713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043794713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-96c95469f3eb44c762a7a505162d5229505a0770c51baa4137f50b267fdaf2c53</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTe-U2WJWoVCoo_6zCZTmpKm6kzE8Sd7-Ab-iROqeBCXN1zOd85Fy4hpwjniIxfPAIUKDgrsAAKoPgeGaFgmBcSxD4Zbe186x-SoxCWAFwoXo5INckuu2C8jfbr47Nyfez6wQ0he3BDkovs3rtmZdfZWxdf0mKNndve2CyhIXrd9TEck4NWr4I9-Zlj8nx99VTd5LO76W01meWGyiLmpTSl4LJsmW04N0pSrbQAgZLOBaVlkhqUAiOw0ZojU62AhkrVznVLjWBjcrbr3Xj3OtgQ66UbfJ9O1hQ4UyVXyBKFO8p4F4K3bb3x3Vr79xqh3v6q_vOrlKG7TEhsv7D-t_n_0DescWqK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043794713</pqid></control><display><type>article</type><title>A Discrete–Continuous Routing Problem with Precedence Constraints</title><source>Springer Nature</source><creator>Chentsov, A. G. ; Chentsov, A. A.</creator><creatorcontrib>Chentsov, A. G. ; Chentsov, A. A.</creatorcontrib><description>We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence constraints and a possible dependence of the cost function on a set of tasks. We study a variant of the approximate realization of the extremum by applying models that involve problems of sequential visits to megalopolises (nonempty finite sets). This variant is naturally embedded into a more general construction that implements sequential visits to nonempty closed sets (NCSs) from a finite system in a metrizable compact space. The space of NCSs is equipped with the Hausdorff metric, which is used to estimate (under the corresponding condition that the sections of the cost functions are continuous) the proximity of the extrema in the problem of sequential visits for any two systems of NCSs (it is assumed that the numbers or NCSs in the systems are the same). The constraints in the form of precedence constraints are preserved in this variant.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543818020074</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Continuity (mathematics) ; Cost function ; Dependence ; Job shops ; Mathematics ; Mathematics and Statistics ; Megalopolises ; Metric space ; Precedence constraints ; Production scheduling</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2018-04, Vol.300 (Suppl 1), p.56-71</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-96c95469f3eb44c762a7a505162d5229505a0770c51baa4137f50b267fdaf2c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Chentsov, A. G.</creatorcontrib><creatorcontrib>Chentsov, A. A.</creatorcontrib><title>A Discrete–Continuous Routing Problem with Precedence Constraints</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence constraints and a possible dependence of the cost function on a set of tasks. We study a variant of the approximate realization of the extremum by applying models that involve problems of sequential visits to megalopolises (nonempty finite sets). This variant is naturally embedded into a more general construction that implements sequential visits to nonempty closed sets (NCSs) from a finite system in a metrizable compact space. The space of NCSs is equipped with the Hausdorff metric, which is used to estimate (under the corresponding condition that the sections of the cost functions are continuous) the proximity of the extrema in the problem of sequential visits for any two systems of NCSs (it is assumed that the numbers or NCSs in the systems are the same). The constraints in the form of precedence constraints are preserved in this variant.</description><subject>Continuity (mathematics)</subject><subject>Cost function</subject><subject>Dependence</subject><subject>Job shops</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Megalopolises</subject><subject>Metric space</subject><subject>Precedence constraints</subject><subject>Production scheduling</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTe-U2WJWoVCoo_6zCZTmpKm6kzE8Sd7-Ab-iROqeBCXN1zOd85Fy4hpwjniIxfPAIUKDgrsAAKoPgeGaFgmBcSxD4Zbe186x-SoxCWAFwoXo5INckuu2C8jfbr47Nyfez6wQ0he3BDkovs3rtmZdfZWxdf0mKNndve2CyhIXrd9TEck4NWr4I9-Zlj8nx99VTd5LO76W01meWGyiLmpTSl4LJsmW04N0pSrbQAgZLOBaVlkhqUAiOw0ZojU62AhkrVznVLjWBjcrbr3Xj3OtgQ66UbfJ9O1hQ4UyVXyBKFO8p4F4K3bb3x3Vr79xqh3v6q_vOrlKG7TEhsv7D-t_n_0DescWqK</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chentsov, A. G.</creator><creator>Chentsov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>A Discrete–Continuous Routing Problem with Precedence Constraints</title><author>Chentsov, A. G. ; Chentsov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-96c95469f3eb44c762a7a505162d5229505a0770c51baa4137f50b267fdaf2c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Continuity (mathematics)</topic><topic>Cost function</topic><topic>Dependence</topic><topic>Job shops</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Megalopolises</topic><topic>Metric space</topic><topic>Precedence constraints</topic><topic>Production scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chentsov, A. G.</creatorcontrib><creatorcontrib>Chentsov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chentsov, A. G.</au><au>Chentsov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Discrete–Continuous Routing Problem with Precedence Constraints</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>300</volume><issue>Suppl 1</issue><spage>56</spage><epage>71</epage><pages>56-71</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>We consider the problem of visiting closed sets in a compact metric space complicated by constraints in the form of precedence constraints and a possible dependence of the cost function on a set of tasks. We study a variant of the approximate realization of the extremum by applying models that involve problems of sequential visits to megalopolises (nonempty finite sets). This variant is naturally embedded into a more general construction that implements sequential visits to nonempty closed sets (NCSs) from a finite system in a metrizable compact space. The space of NCSs is equipped with the Hausdorff metric, which is used to estimate (under the corresponding condition that the sections of the cost functions are continuous) the proximity of the extrema in the problem of sequential visits for any two systems of NCSs (it is assumed that the numbers or NCSs in the systems are the same). The constraints in the form of precedence constraints are preserved in this variant.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543818020074</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0081-5438
ispartof Proceedings of the Steklov Institute of Mathematics, 2018-04, Vol.300 (Suppl 1), p.56-71
issn 0081-5438
1531-8605
language eng
recordid cdi_proquest_journals_2043794713
source Springer Nature
subjects Continuity (mathematics)
Cost function
Dependence
Job shops
Mathematics
Mathematics and Statistics
Megalopolises
Metric space
Precedence constraints
Production scheduling
title A Discrete–Continuous Routing Problem with Precedence Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Discrete%E2%80%93Continuous%20Routing%20Problem%20with%20Precedence%20Constraints&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Chentsov,%20A.%20G.&rft.date=2018-04-01&rft.volume=300&rft.issue=Suppl%201&rft.spage=56&rft.epage=71&rft.pages=56-71&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543818020074&rft_dat=%3Cproquest_cross%3E2043794713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-96c95469f3eb44c762a7a505162d5229505a0770c51baa4137f50b267fdaf2c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043794713&rft_id=info:pmid/&rfr_iscdi=true