Loading…
Composition and treatment of effluent from shale gas production
The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high polluting potential. This work is a literature data consolidation on the physical–chemical characterization of the effluents generated in the production...
Saved in:
Published in: | Clean technologies and environmental policy 2018-08, Vol.20 (6), p.1245-1257 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593 |
container_end_page | 1257 |
container_issue | 6 |
container_start_page | 1245 |
container_title | Clean technologies and environmental policy |
container_volume | 20 |
creator | de Castro Schwab, Marina Cammarota, Magali Christe |
description | The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high polluting potential. This work is a literature data consolidation on the physical–chemical characterization of the effluents generated in the production stage. Comparison of effluent characterization with the limits established in the Brazilian legislation revealed that the oil and grease, barium, toluene, and xylene (m, p) content in the raw effluent exceed the limits for disposal into water bodies, reaching values 29 and 633 times above the limits for oil and grease and barium content, respectively. The values of total dissolved solids, nitrate, sulfate, aluminum, arsenic, barium, chlorides, chromium, copper, iron, lithium, manganese, nickel, phosphorus, lead, antimony, selenium, zinc, benzene, toluene, ethylbenzene, xylene (m, p, o), and styrene exceed the quality standards of Class 2 water bodies from at least 2 times to 1225 times (toluene) and 4527 times (barium). A comparison between the effluent treatment technologies used in the shale gas production activity supports the proposition of a combination of processes that could efficiently remove contaminants considered most relevant, consisting of oil/water separator tanks or hydrocyclones, coagulation/flocculation and flotation, biological treatment or advanced oxidation processes, chemical precipitation, direct osmosis, and UV disinfection, if necessary. |
doi_str_mv | 10.1007/s10098-018-1549-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2044607065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044607065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA6-pJ2iTNSqR4gwE3Cu5Cmss4Q9uMSbvw7U2p6MrNucB_gQ-hSwLXBEDcpDxlXQCpC8IqWdRHaEV4_iRj9fHvXb2forOU9gCUCgordNuE_hDSbtyFAevB4jE6PfZuGHHw2HnfTfPtY-hx-tCdw1ud8CEGO5nZc45OvO6Su_jZa_T2cP_aPBWbl8fn5m5TmJKVY2Fszb2UpaUaWNm22gBwK4WklIuqdUwQzgVAZYThpjVeOqopB00sWMNkuUZXS26u_pxcGtU-THHIlYpCVXEQwFlWkUVlYkgpOq8Ocdfr-KUIqJmTWjipzEnNnFSdPXTxpKwdti7-Jf9v-gbQ3WqS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044607065</pqid></control><display><type>article</type><title>Composition and treatment of effluent from shale gas production</title><source>ABI/INFORM Global</source><source>PAIS Index</source><source>Springer Link</source><source>ProQuest Social Science Premium Collection</source><creator>de Castro Schwab, Marina ; Cammarota, Magali Christe</creator><creatorcontrib>de Castro Schwab, Marina ; Cammarota, Magali Christe</creatorcontrib><description>The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high polluting potential. This work is a literature data consolidation on the physical–chemical characterization of the effluents generated in the production stage. Comparison of effluent characterization with the limits established in the Brazilian legislation revealed that the oil and grease, barium, toluene, and xylene (m, p) content in the raw effluent exceed the limits for disposal into water bodies, reaching values 29 and 633 times above the limits for oil and grease and barium content, respectively. The values of total dissolved solids, nitrate, sulfate, aluminum, arsenic, barium, chlorides, chromium, copper, iron, lithium, manganese, nickel, phosphorus, lead, antimony, selenium, zinc, benzene, toluene, ethylbenzene, xylene (m, p, o), and styrene exceed the quality standards of Class 2 water bodies from at least 2 times to 1225 times (toluene) and 4527 times (barium). A comparison between the effluent treatment technologies used in the shale gas production activity supports the proposition of a combination of processes that could efficiently remove contaminants considered most relevant, consisting of oil/water separator tanks or hydrocyclones, coagulation/flocculation and flotation, biological treatment or advanced oxidation processes, chemical precipitation, direct osmosis, and UV disinfection, if necessary.</description><identifier>ISSN: 1618-954X</identifier><identifier>EISSN: 1618-9558</identifier><identifier>DOI: 10.1007/s10098-018-1549-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Antimony ; Arsenic ; Barium ; Benzene ; Biological treatment ; Chemical precipitation ; Chromium ; Contaminants ; Disinfection ; Earth and Environmental Science ; Effluent treatment ; Effluents ; Environment ; Environmental Economics ; Environmental Engineering/Biotechnology ; Environmental policy ; Ethylbenzene ; Flocculation ; Flotation ; Gas production ; Grease ; Hydrocyclones ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Lead ; Legislation ; Lithium ; Manganese ; Natural gas ; Nickel ; Oil ; Oil and gas production ; Original Paper ; Osmosis ; Oxidation ; Petroleum ; Phosphorus ; Production ; Quality standards ; Selenium ; Shale ; Shale gas ; Shales ; Styrene ; Sustainable Development ; Toluene ; Total dissolved solids ; Ultraviolet radiation ; Wastewater treatment ; Water ; Water tanks ; Xylene</subject><ispartof>Clean technologies and environmental policy, 2018-08, Vol.20 (6), p.1245-1257</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Clean Technologies and Environmental Policy is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593</citedby><cites>FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593</cites><orcidid>0000-0002-0637-9707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2044607065/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2044607065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21394,27866,27924,27925,33611,36060,43733,44363,74221,74895</link.rule.ids></links><search><creatorcontrib>de Castro Schwab, Marina</creatorcontrib><creatorcontrib>Cammarota, Magali Christe</creatorcontrib><title>Composition and treatment of effluent from shale gas production</title><title>Clean technologies and environmental policy</title><addtitle>Clean Techn Environ Policy</addtitle><description>The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high polluting potential. This work is a literature data consolidation on the physical–chemical characterization of the effluents generated in the production stage. Comparison of effluent characterization with the limits established in the Brazilian legislation revealed that the oil and grease, barium, toluene, and xylene (m, p) content in the raw effluent exceed the limits for disposal into water bodies, reaching values 29 and 633 times above the limits for oil and grease and barium content, respectively. The values of total dissolved solids, nitrate, sulfate, aluminum, arsenic, barium, chlorides, chromium, copper, iron, lithium, manganese, nickel, phosphorus, lead, antimony, selenium, zinc, benzene, toluene, ethylbenzene, xylene (m, p, o), and styrene exceed the quality standards of Class 2 water bodies from at least 2 times to 1225 times (toluene) and 4527 times (barium). A comparison between the effluent treatment technologies used in the shale gas production activity supports the proposition of a combination of processes that could efficiently remove contaminants considered most relevant, consisting of oil/water separator tanks or hydrocyclones, coagulation/flocculation and flotation, biological treatment or advanced oxidation processes, chemical precipitation, direct osmosis, and UV disinfection, if necessary.</description><subject>Aluminum</subject><subject>Antimony</subject><subject>Arsenic</subject><subject>Barium</subject><subject>Benzene</subject><subject>Biological treatment</subject><subject>Chemical precipitation</subject><subject>Chromium</subject><subject>Contaminants</subject><subject>Disinfection</subject><subject>Earth and Environmental Science</subject><subject>Effluent treatment</subject><subject>Effluents</subject><subject>Environment</subject><subject>Environmental Economics</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental policy</subject><subject>Ethylbenzene</subject><subject>Flocculation</subject><subject>Flotation</subject><subject>Gas production</subject><subject>Grease</subject><subject>Hydrocyclones</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lead</subject><subject>Legislation</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Natural gas</subject><subject>Nickel</subject><subject>Oil</subject><subject>Oil and gas production</subject><subject>Original Paper</subject><subject>Osmosis</subject><subject>Oxidation</subject><subject>Petroleum</subject><subject>Phosphorus</subject><subject>Production</subject><subject>Quality standards</subject><subject>Selenium</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shales</subject><subject>Styrene</subject><subject>Sustainable Development</subject><subject>Toluene</subject><subject>Total dissolved solids</subject><subject>Ultraviolet radiation</subject><subject>Wastewater treatment</subject><subject>Water</subject><subject>Water tanks</subject><subject>Xylene</subject><issn>1618-954X</issn><issn>1618-9558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA6-pJ2iTNSqR4gwE3Cu5Cmss4Q9uMSbvw7U2p6MrNucB_gQ-hSwLXBEDcpDxlXQCpC8IqWdRHaEV4_iRj9fHvXb2forOU9gCUCgordNuE_hDSbtyFAevB4jE6PfZuGHHw2HnfTfPtY-hx-tCdw1ud8CEGO5nZc45OvO6Su_jZa_T2cP_aPBWbl8fn5m5TmJKVY2Fszb2UpaUaWNm22gBwK4WklIuqdUwQzgVAZYThpjVeOqopB00sWMNkuUZXS26u_pxcGtU-THHIlYpCVXEQwFlWkUVlYkgpOq8Ocdfr-KUIqJmTWjipzEnNnFSdPXTxpKwdti7-Jf9v-gbQ3WqS</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>de Castro Schwab, Marina</creator><creator>Cammarota, Magali Christe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0637-9707</orcidid></search><sort><creationdate>20180801</creationdate><title>Composition and treatment of effluent from shale gas production</title><author>de Castro Schwab, Marina ; Cammarota, Magali Christe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Antimony</topic><topic>Arsenic</topic><topic>Barium</topic><topic>Benzene</topic><topic>Biological treatment</topic><topic>Chemical precipitation</topic><topic>Chromium</topic><topic>Contaminants</topic><topic>Disinfection</topic><topic>Earth and Environmental Science</topic><topic>Effluent treatment</topic><topic>Effluents</topic><topic>Environment</topic><topic>Environmental Economics</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental policy</topic><topic>Ethylbenzene</topic><topic>Flocculation</topic><topic>Flotation</topic><topic>Gas production</topic><topic>Grease</topic><topic>Hydrocyclones</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lead</topic><topic>Legislation</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Natural gas</topic><topic>Nickel</topic><topic>Oil</topic><topic>Oil and gas production</topic><topic>Original Paper</topic><topic>Osmosis</topic><topic>Oxidation</topic><topic>Petroleum</topic><topic>Phosphorus</topic><topic>Production</topic><topic>Quality standards</topic><topic>Selenium</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shales</topic><topic>Styrene</topic><topic>Sustainable Development</topic><topic>Toluene</topic><topic>Total dissolved solids</topic><topic>Ultraviolet radiation</topic><topic>Wastewater treatment</topic><topic>Water</topic><topic>Water tanks</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Castro Schwab, Marina</creatorcontrib><creatorcontrib>Cammarota, Magali Christe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Social Science Premium Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Social Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Clean technologies and environmental policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Castro Schwab, Marina</au><au>Cammarota, Magali Christe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and treatment of effluent from shale gas production</atitle><jtitle>Clean technologies and environmental policy</jtitle><stitle>Clean Techn Environ Policy</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>20</volume><issue>6</issue><spage>1245</spage><epage>1257</epage><pages>1245-1257</pages><issn>1618-954X</issn><eissn>1618-9558</eissn><abstract>The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high polluting potential. This work is a literature data consolidation on the physical–chemical characterization of the effluents generated in the production stage. Comparison of effluent characterization with the limits established in the Brazilian legislation revealed that the oil and grease, barium, toluene, and xylene (m, p) content in the raw effluent exceed the limits for disposal into water bodies, reaching values 29 and 633 times above the limits for oil and grease and barium content, respectively. The values of total dissolved solids, nitrate, sulfate, aluminum, arsenic, barium, chlorides, chromium, copper, iron, lithium, manganese, nickel, phosphorus, lead, antimony, selenium, zinc, benzene, toluene, ethylbenzene, xylene (m, p, o), and styrene exceed the quality standards of Class 2 water bodies from at least 2 times to 1225 times (toluene) and 4527 times (barium). A comparison between the effluent treatment technologies used in the shale gas production activity supports the proposition of a combination of processes that could efficiently remove contaminants considered most relevant, consisting of oil/water separator tanks or hydrocyclones, coagulation/flocculation and flotation, biological treatment or advanced oxidation processes, chemical precipitation, direct osmosis, and UV disinfection, if necessary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10098-018-1549-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0637-9707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-954X |
ispartof | Clean technologies and environmental policy, 2018-08, Vol.20 (6), p.1245-1257 |
issn | 1618-954X 1618-9558 |
language | eng |
recordid | cdi_proquest_journals_2044607065 |
source | ABI/INFORM Global; PAIS Index; Springer Link; ProQuest Social Science Premium Collection |
subjects | Aluminum Antimony Arsenic Barium Benzene Biological treatment Chemical precipitation Chromium Contaminants Disinfection Earth and Environmental Science Effluent treatment Effluents Environment Environmental Economics Environmental Engineering/Biotechnology Environmental policy Ethylbenzene Flocculation Flotation Gas production Grease Hydrocyclones Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Lead Legislation Lithium Manganese Natural gas Nickel Oil Oil and gas production Original Paper Osmosis Oxidation Petroleum Phosphorus Production Quality standards Selenium Shale Shale gas Shales Styrene Sustainable Development Toluene Total dissolved solids Ultraviolet radiation Wastewater treatment Water Water tanks Xylene |
title | Composition and treatment of effluent from shale gas production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20treatment%20of%20effluent%20from%20shale%20gas%20production&rft.jtitle=Clean%20technologies%20and%20environmental%20policy&rft.au=de%20Castro%20Schwab,%20Marina&rft.date=2018-08-01&rft.volume=20&rft.issue=6&rft.spage=1245&rft.epage=1257&rft.pages=1245-1257&rft.issn=1618-954X&rft.eissn=1618-9558&rft_id=info:doi/10.1007/s10098-018-1549-8&rft_dat=%3Cproquest_cross%3E2044607065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-cd86f993d2a053bbac006d97922674be571667004c7c6cbcf9e2a260a1d0dc593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2044607065&rft_id=info:pmid/&rfr_iscdi=true |