Loading…
Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms
•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each wav...
Saved in:
Published in: | International journal of refrigeration 2017-02, Vol.74, p.38-46 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213 |
container_end_page | 46 |
container_issue | |
container_start_page | 38 |
container_title | International journal of refrigeration |
container_volume | 74 |
creator | Teyber, R. Trevizoli, P.V. Niknia, I. Christiaanse, T.V. Govindappa, P. Rowe, A. |
description | •A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed.
A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform. |
doi_str_mv | 10.1016/j.ijrefrig.2016.10.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2045350786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700716303267</els_id><sourcerecordid>2045350786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD_-ggQ8b51kd5P0phS_oOBFzyGbnZQs7aYmaav_3pTq2ct88c47zEPIDYMpAybuhqkfIrrol1Ne-jKcArATMmFKzioOip2SCbAGKgkgz8lFSkMRSGjVhMTHrw1Gv8YxmxUtpQtxbUaL1I87TNkvTfZhpMFRM1Jjs98hXZvliNlbGnGJI0aTQ6Rp2w1oM82B9t45jMWSutXW9yWGPd2bHR7M0xU5c2aV8Po3X5KPp8f3-Uu1eHt-nT8sKlvP6lwZ1rOmc9xyAbUQkgvZ1JaD6zupGg69A-laZztulGIzJpgAbq1pGVOd4qy-JLdH300Mn9vyix7CNo7lpObQtHULUomiEkeVjSGlwlFvCg4TvzUDfeCrB_3HVx_4HuYFX1m8Py5i-WHnMepkPRZyvY-Fg-6D_8_iB2bBiSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045350786</pqid></control><display><type>article</type><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><source>ScienceDirect Freedom Collection</source><creator>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</creator><creatorcontrib>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</creatorcontrib><description>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed.
A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2016.10.001</identifier><language>eng</language><publisher>Paris: Elsevier Ltd</publisher><subject>Active magnetic regenerator ; Flow control ; Fluid dynamics ; Fluid flow ; Forme d'onde de vitesse ; Froid magnétique à température ambiante ; Halbach array ; Magnetic fields ; Room temperature magnetic refrigeration ; Régulation de flux ; Régénérateur magnétique actif ; Simulation ; Tableau Halbach ; Velocity waveform ; Waveforms</subject><ispartof>International journal of refrigeration, 2017-02, Vol.74, p.38-46</ispartof><rights>2016 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</citedby><cites>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Teyber, R.</creatorcontrib><creatorcontrib>Trevizoli, P.V.</creatorcontrib><creatorcontrib>Niknia, I.</creatorcontrib><creatorcontrib>Christiaanse, T.V.</creatorcontrib><creatorcontrib>Govindappa, P.</creatorcontrib><creatorcontrib>Rowe, A.</creatorcontrib><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><title>International journal of refrigeration</title><description>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed.
A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</description><subject>Active magnetic regenerator</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Forme d'onde de vitesse</subject><subject>Froid magnétique à température ambiante</subject><subject>Halbach array</subject><subject>Magnetic fields</subject><subject>Room temperature magnetic refrigeration</subject><subject>Régulation de flux</subject><subject>Régénérateur magnétique actif</subject><subject>Simulation</subject><subject>Tableau Halbach</subject><subject>Velocity waveform</subject><subject>Waveforms</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD_-ggQ8b51kd5P0phS_oOBFzyGbnZQs7aYmaav_3pTq2ct88c47zEPIDYMpAybuhqkfIrrol1Ne-jKcArATMmFKzioOip2SCbAGKgkgz8lFSkMRSGjVhMTHrw1Gv8YxmxUtpQtxbUaL1I87TNkvTfZhpMFRM1Jjs98hXZvliNlbGnGJI0aTQ6Rp2w1oM82B9t45jMWSutXW9yWGPd2bHR7M0xU5c2aV8Po3X5KPp8f3-Uu1eHt-nT8sKlvP6lwZ1rOmc9xyAbUQkgvZ1JaD6zupGg69A-laZztulGIzJpgAbq1pGVOd4qy-JLdH300Mn9vyix7CNo7lpObQtHULUomiEkeVjSGlwlFvCg4TvzUDfeCrB_3HVx_4HuYFX1m8Py5i-WHnMepkPRZyvY-Fg-6D_8_iB2bBiSk</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Teyber, R.</creator><creator>Trevizoli, P.V.</creator><creator>Niknia, I.</creator><creator>Christiaanse, T.V.</creator><creator>Govindappa, P.</creator><creator>Rowe, A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201702</creationdate><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><author>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active magnetic regenerator</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Forme d'onde de vitesse</topic><topic>Froid magnétique à température ambiante</topic><topic>Halbach array</topic><topic>Magnetic fields</topic><topic>Room temperature magnetic refrigeration</topic><topic>Régulation de flux</topic><topic>Régénérateur magnétique actif</topic><topic>Simulation</topic><topic>Tableau Halbach</topic><topic>Velocity waveform</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teyber, R.</creatorcontrib><creatorcontrib>Trevizoli, P.V.</creatorcontrib><creatorcontrib>Niknia, I.</creatorcontrib><creatorcontrib>Christiaanse, T.V.</creatorcontrib><creatorcontrib>Govindappa, P.</creatorcontrib><creatorcontrib>Rowe, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teyber, R.</au><au>Trevizoli, P.V.</au><au>Niknia, I.</au><au>Christiaanse, T.V.</au><au>Govindappa, P.</au><au>Rowe, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</atitle><jtitle>International journal of refrigeration</jtitle><date>2017-02</date><risdate>2017</risdate><volume>74</volume><spage>38</spage><epage>46</epage><pages>38-46</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed.
A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</abstract><cop>Paris</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2016.10.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7007 |
ispartof | International journal of refrigeration, 2017-02, Vol.74, p.38-46 |
issn | 0140-7007 1879-2081 |
language | eng |
recordid | cdi_proquest_journals_2045350786 |
source | ScienceDirect Freedom Collection |
subjects | Active magnetic regenerator Flow control Fluid dynamics Fluid flow Forme d'onde de vitesse Froid magnétique à température ambiante Halbach array Magnetic fields Room temperature magnetic refrigeration Régulation de flux Régénérateur magnétique actif Simulation Tableau Halbach Velocity waveform Waveforms |
title | Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20performance%20investigation%20of%20an%20active%20magnetic%20regenerator%20subject%20to%20different%20fluid%20flow%20waveforms&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Teyber,%20R.&rft.date=2017-02&rft.volume=74&rft.spage=38&rft.epage=46&rft.pages=38-46&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2016.10.001&rft_dat=%3Cproquest_cross%3E2045350786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2045350786&rft_id=info:pmid/&rfr_iscdi=true |