Loading…

Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms

•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each wav...

Full description

Saved in:
Bibliographic Details
Published in:International journal of refrigeration 2017-02, Vol.74, p.38-46
Main Authors: Teyber, R., Trevizoli, P.V., Niknia, I., Christiaanse, T.V., Govindappa, P., Rowe, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213
cites cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213
container_end_page 46
container_issue
container_start_page 38
container_title International journal of refrigeration
container_volume 74
creator Teyber, R.
Trevizoli, P.V.
Niknia, I.
Christiaanse, T.V.
Govindappa, P.
Rowe, A.
description •A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed. A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.
doi_str_mv 10.1016/j.ijrefrig.2016.10.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2045350786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700716303267</els_id><sourcerecordid>2045350786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD_-ggQ8b51kd5P0phS_oOBFzyGbnZQs7aYmaav_3pTq2ct88c47zEPIDYMpAybuhqkfIrrol1Ne-jKcArATMmFKzioOip2SCbAGKgkgz8lFSkMRSGjVhMTHrw1Gv8YxmxUtpQtxbUaL1I87TNkvTfZhpMFRM1Jjs98hXZvliNlbGnGJI0aTQ6Rp2w1oM82B9t45jMWSutXW9yWGPd2bHR7M0xU5c2aV8Po3X5KPp8f3-Uu1eHt-nT8sKlvP6lwZ1rOmc9xyAbUQkgvZ1JaD6zupGg69A-laZztulGIzJpgAbq1pGVOd4qy-JLdH300Mn9vyix7CNo7lpObQtHULUomiEkeVjSGlwlFvCg4TvzUDfeCrB_3HVx_4HuYFX1m8Py5i-WHnMepkPRZyvY-Fg-6D_8_iB2bBiSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045350786</pqid></control><display><type>article</type><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><source>ScienceDirect Freedom Collection</source><creator>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</creator><creatorcontrib>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</creatorcontrib><description>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed. A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2016.10.001</identifier><language>eng</language><publisher>Paris: Elsevier Ltd</publisher><subject>Active magnetic regenerator ; Flow control ; Fluid dynamics ; Fluid flow ; Forme d'onde de vitesse ; Froid magnétique à température ambiante ; Halbach array ; Magnetic fields ; Room temperature magnetic refrigeration ; Régulation de flux ; Régénérateur magnétique actif ; Simulation ; Tableau Halbach ; Velocity waveform ; Waveforms</subject><ispartof>International journal of refrigeration, 2017-02, Vol.74, p.38-46</ispartof><rights>2016 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</citedby><cites>FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Teyber, R.</creatorcontrib><creatorcontrib>Trevizoli, P.V.</creatorcontrib><creatorcontrib>Niknia, I.</creatorcontrib><creatorcontrib>Christiaanse, T.V.</creatorcontrib><creatorcontrib>Govindappa, P.</creatorcontrib><creatorcontrib>Rowe, A.</creatorcontrib><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><title>International journal of refrigeration</title><description>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed. A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</description><subject>Active magnetic regenerator</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Forme d'onde de vitesse</subject><subject>Froid magnétique à température ambiante</subject><subject>Halbach array</subject><subject>Magnetic fields</subject><subject>Room temperature magnetic refrigeration</subject><subject>Régulation de flux</subject><subject>Régénérateur magnétique actif</subject><subject>Simulation</subject><subject>Tableau Halbach</subject><subject>Velocity waveform</subject><subject>Waveforms</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD_-ggQ8b51kd5P0phS_oOBFzyGbnZQs7aYmaav_3pTq2ct88c47zEPIDYMpAybuhqkfIrrol1Ne-jKcArATMmFKzioOip2SCbAGKgkgz8lFSkMRSGjVhMTHrw1Gv8YxmxUtpQtxbUaL1I87TNkvTfZhpMFRM1Jjs98hXZvliNlbGnGJI0aTQ6Rp2w1oM82B9t45jMWSutXW9yWGPd2bHR7M0xU5c2aV8Po3X5KPp8f3-Uu1eHt-nT8sKlvP6lwZ1rOmc9xyAbUQkgvZ1JaD6zupGg69A-laZztulGIzJpgAbq1pGVOd4qy-JLdH300Mn9vyix7CNo7lpObQtHULUomiEkeVjSGlwlFvCg4TvzUDfeCrB_3HVx_4HuYFX1m8Py5i-WHnMepkPRZyvY-Fg-6D_8_iB2bBiSk</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Teyber, R.</creator><creator>Trevizoli, P.V.</creator><creator>Niknia, I.</creator><creator>Christiaanse, T.V.</creator><creator>Govindappa, P.</creator><creator>Rowe, A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201702</creationdate><title>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</title><author>Teyber, R. ; Trevizoli, P.V. ; Niknia, I. ; Christiaanse, T.V. ; Govindappa, P. ; Rowe, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active magnetic regenerator</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Forme d'onde de vitesse</topic><topic>Froid magnétique à température ambiante</topic><topic>Halbach array</topic><topic>Magnetic fields</topic><topic>Room temperature magnetic refrigeration</topic><topic>Régulation de flux</topic><topic>Régénérateur magnétique actif</topic><topic>Simulation</topic><topic>Tableau Halbach</topic><topic>Velocity waveform</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teyber, R.</creatorcontrib><creatorcontrib>Trevizoli, P.V.</creatorcontrib><creatorcontrib>Niknia, I.</creatorcontrib><creatorcontrib>Christiaanse, T.V.</creatorcontrib><creatorcontrib>Govindappa, P.</creatorcontrib><creatorcontrib>Rowe, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teyber, R.</au><au>Trevizoli, P.V.</au><au>Niknia, I.</au><au>Christiaanse, T.V.</au><au>Govindappa, P.</au><au>Rowe, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms</atitle><jtitle>International journal of refrigeration</jtitle><date>2017-02</date><risdate>2017</risdate><volume>74</volume><spage>38</spage><epage>46</epage><pages>38-46</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•A flow control device based on cam actuated valves is implemented on an AMR device.•A no-flow period is used to increase the flow-averaged magnetic field change.•The system is simulated to evaluate waveforms of constant displaced volume.•AMR experiments are conducted and the performance of each waveform is discussed. A flow control mechanism based on cam actuated valves is designed and implemented on an active magnetic regenerator test apparatus. The objective is to overcome the brief low field period of the nested concentric Halbach array by decreasing the fluid blow width, displacing fluid only when the magnetic field is close to the minimum and maximum values. Flow waveforms are simulated to evaluate varying blow durations with the same displaced volume. AMR experiments are performed where the largest ExQ of 1.62 W is obtained with VD = 13.90 cm3 and a diversion ratio of δ = 0.41, demonstrating an 11.2% increase over the sinusoidal waveform.</abstract><cop>Paris</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2016.10.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-7007
ispartof International journal of refrigeration, 2017-02, Vol.74, p.38-46
issn 0140-7007
1879-2081
language eng
recordid cdi_proquest_journals_2045350786
source ScienceDirect Freedom Collection
subjects Active magnetic regenerator
Flow control
Fluid dynamics
Fluid flow
Forme d'onde de vitesse
Froid magnétique à température ambiante
Halbach array
Magnetic fields
Room temperature magnetic refrigeration
Régulation de flux
Régénérateur magnétique actif
Simulation
Tableau Halbach
Velocity waveform
Waveforms
title Experimental performance investigation of an active magnetic regenerator subject to different fluid flow waveforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20performance%20investigation%20of%20an%20active%20magnetic%20regenerator%20subject%20to%20different%20fluid%20flow%20waveforms&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Teyber,%20R.&rft.date=2017-02&rft.volume=74&rft.spage=38&rft.epage=46&rft.pages=38-46&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2016.10.001&rft_dat=%3Cproquest_cross%3E2045350786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-a1d14bf2c260366726743c20fdb78420df07f5fcb2a8819161602cca5118b8213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2045350786&rft_id=info:pmid/&rfr_iscdi=true