Loading…

Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems

Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2018-10, Vol.65 (10), p.8153-8162
Main Authors: Huang, Kaixing, Zhou, Chunjie, Tian, Yu-Chu, Yang, Shuanghua, Qin, Yuanqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23
cites cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23
container_end_page 8162
container_issue 10
container_start_page 8153
container_title IEEE transactions on industrial electronics (1982)
container_volume 65
creator Huang, Kaixing
Zhou, Chunjie
Tian, Yu-Chu
Yang, Shuanghua
Qin, Yuanqing
description Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.
doi_str_mv 10.1109/TIE.2018.2798605
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2046303874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270567</ieee_id><sourcerecordid>2046303874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbxs4nlx-rXtHglB3YREo3huSmllEXaxUw77712EcJrDPO87mYeQewojSqF8mlfTEQOqR0yVugB5QQZUSpWXpdCXZABM6RxAFNfkBnENQIWkckA-xogesW6-s7Ty2fuqw9rZTVZtd9alrA3ZpFv4aFOy7geztsmqZrnHFOse-l_l58xnh8lv8ZZcBbtBf3eaQ_L1PJ1PXvPZ20s1Gc9yxzlPuWUOBKUiSEaXSy0XsrBOW8sDD0FpGpQSpXRBlFawwhZBCe1D4bwOsPCO8SF5PPbuYvu795jMut3Hpj9pWP8oB66V6Ck4Ui62iNEHs4v11sbOUDAHc6Y3Zw7mzMlcH3k4Rmrv_RnXTIEsFP8DuJ9qWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046303874</pqid></control><display><type>article</type><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</creator><creatorcontrib>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</creatorcontrib><description>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2798605</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Bayes methods ; Bayesian ; Bayesian analysis ; Chemical attack ; Computational modeling ; Computer simulation ; Cyber-physical systems ; Cybersecurity ; Electric power distribution ; Electric power grids ; Hardware-in-the-loop simulation ; Hybrid systems ; industrial cyber-physical system (ICPS) ; Risk assessment ; Risk management ; Security ; Sensors ; stochastic hybrid system (SHS) ; Stochastic processes ; Water distribution ; Water engineering</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-10, Vol.65 (10), p.8153-8162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</citedby><cites>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</cites><orcidid>0000-0002-3577-3228 ; 0000-0002-8709-5625 ; 0000-0001-5291-5841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Huang, Kaixing</creatorcontrib><creatorcontrib>Zhou, Chunjie</creatorcontrib><creatorcontrib>Tian, Yu-Chu</creatorcontrib><creatorcontrib>Yang, Shuanghua</creatorcontrib><creatorcontrib>Qin, Yuanqing</creatorcontrib><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</description><subject>Actuators</subject><subject>Bayes methods</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Chemical attack</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Electric power distribution</subject><subject>Electric power grids</subject><subject>Hardware-in-the-loop simulation</subject><subject>Hybrid systems</subject><subject>industrial cyber-physical system (ICPS)</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Security</subject><subject>Sensors</subject><subject>stochastic hybrid system (SHS)</subject><subject>Stochastic processes</subject><subject>Water distribution</subject><subject>Water engineering</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYjeTbxs4nlx-rXtHglB3YREo3huSmllEXaxUw77712EcJrDPO87mYeQewojSqF8mlfTEQOqR0yVugB5QQZUSpWXpdCXZABM6RxAFNfkBnENQIWkckA-xogesW6-s7Ty2fuqw9rZTVZtd9alrA3ZpFv4aFOy7geztsmqZrnHFOse-l_l58xnh8lv8ZZcBbtBf3eaQ_L1PJ1PXvPZ20s1Gc9yxzlPuWUOBKUiSEaXSy0XsrBOW8sDD0FpGpQSpXRBlFawwhZBCe1D4bwOsPCO8SF5PPbuYvu795jMut3Hpj9pWP8oB66V6Ck4Ui62iNEHs4v11sbOUDAHc6Y3Zw7mzMlcH3k4Rmrv_RnXTIEsFP8DuJ9qWQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Huang, Kaixing</creator><creator>Zhou, Chunjie</creator><creator>Tian, Yu-Chu</creator><creator>Yang, Shuanghua</creator><creator>Qin, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3577-3228</orcidid><orcidid>https://orcid.org/0000-0002-8709-5625</orcidid><orcidid>https://orcid.org/0000-0001-5291-5841</orcidid></search><sort><creationdate>20181001</creationdate><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><author>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Bayes methods</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Chemical attack</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Electric power distribution</topic><topic>Electric power grids</topic><topic>Hardware-in-the-loop simulation</topic><topic>Hybrid systems</topic><topic>industrial cyber-physical system (ICPS)</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Security</topic><topic>Sensors</topic><topic>stochastic hybrid system (SHS)</topic><topic>Stochastic processes</topic><topic>Water distribution</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kaixing</creatorcontrib><creatorcontrib>Zhou, Chunjie</creatorcontrib><creatorcontrib>Tian, Yu-Chu</creatorcontrib><creatorcontrib>Yang, Shuanghua</creatorcontrib><creatorcontrib>Qin, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kaixing</au><au>Zhou, Chunjie</au><au>Tian, Yu-Chu</au><au>Yang, Shuanghua</au><au>Qin, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>8153</spage><epage>8162</epage><pages>8153-8162</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2798605</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3577-3228</orcidid><orcidid>https://orcid.org/0000-0002-8709-5625</orcidid><orcidid>https://orcid.org/0000-0001-5291-5841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2018-10, Vol.65 (10), p.8153-8162
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2046303874
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Bayes methods
Bayesian
Bayesian analysis
Chemical attack
Computational modeling
Computer simulation
Cyber-physical systems
Cybersecurity
Electric power distribution
Electric power grids
Hardware-in-the-loop simulation
Hybrid systems
industrial cyber-physical system (ICPS)
Risk assessment
Risk management
Security
Sensors
stochastic hybrid system (SHS)
Stochastic processes
Water distribution
Water engineering
title Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Physical%20Impact%20of%20Cyberattacks%20on%20Industrial%20Cyber-Physical%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Huang,%20Kaixing&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=8153&rft.epage=8162&rft.pages=8153-8162&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2798605&rft_dat=%3Cproquest_ieee_%3E2046303874%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046303874&rft_id=info:pmid/&rft_ieee_id=8270567&rfr_iscdi=true