Loading…
Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems
Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2018-10, Vol.65 (10), p.8153-8162 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23 |
container_end_page | 8162 |
container_issue | 10 |
container_start_page | 8153 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 65 |
creator | Huang, Kaixing Zhou, Chunjie Tian, Yu-Chu Yang, Shuanghua Qin, Yuanqing |
description | Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed. |
doi_str_mv | 10.1109/TIE.2018.2798605 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2046303874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270567</ieee_id><sourcerecordid>2046303874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbxs4nlx-rXtHglB3YREo3huSmllEXaxUw77712EcJrDPO87mYeQewojSqF8mlfTEQOqR0yVugB5QQZUSpWXpdCXZABM6RxAFNfkBnENQIWkckA-xogesW6-s7Ty2fuqw9rZTVZtd9alrA3ZpFv4aFOy7geztsmqZrnHFOse-l_l58xnh8lv8ZZcBbtBf3eaQ_L1PJ1PXvPZ20s1Gc9yxzlPuWUOBKUiSEaXSy0XsrBOW8sDD0FpGpQSpXRBlFawwhZBCe1D4bwOsPCO8SF5PPbuYvu795jMut3Hpj9pWP8oB66V6Ck4Ui62iNEHs4v11sbOUDAHc6Y3Zw7mzMlcH3k4Rmrv_RnXTIEsFP8DuJ9qWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046303874</pqid></control><display><type>article</type><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</creator><creatorcontrib>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</creatorcontrib><description>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2798605</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Bayes methods ; Bayesian ; Bayesian analysis ; Chemical attack ; Computational modeling ; Computer simulation ; Cyber-physical systems ; Cybersecurity ; Electric power distribution ; Electric power grids ; Hardware-in-the-loop simulation ; Hybrid systems ; industrial cyber-physical system (ICPS) ; Risk assessment ; Risk management ; Security ; Sensors ; stochastic hybrid system (SHS) ; Stochastic processes ; Water distribution ; Water engineering</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-10, Vol.65 (10), p.8153-8162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</citedby><cites>FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</cites><orcidid>0000-0002-3577-3228 ; 0000-0002-8709-5625 ; 0000-0001-5291-5841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Huang, Kaixing</creatorcontrib><creatorcontrib>Zhou, Chunjie</creatorcontrib><creatorcontrib>Tian, Yu-Chu</creatorcontrib><creatorcontrib>Yang, Shuanghua</creatorcontrib><creatorcontrib>Qin, Yuanqing</creatorcontrib><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</description><subject>Actuators</subject><subject>Bayes methods</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Chemical attack</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Electric power distribution</subject><subject>Electric power grids</subject><subject>Hardware-in-the-loop simulation</subject><subject>Hybrid systems</subject><subject>industrial cyber-physical system (ICPS)</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Security</subject><subject>Sensors</subject><subject>stochastic hybrid system (SHS)</subject><subject>Stochastic processes</subject><subject>Water distribution</subject><subject>Water engineering</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYjeTbxs4nlx-rXtHglB3YREo3huSmllEXaxUw77712EcJrDPO87mYeQewojSqF8mlfTEQOqR0yVugB5QQZUSpWXpdCXZABM6RxAFNfkBnENQIWkckA-xogesW6-s7Ty2fuqw9rZTVZtd9alrA3ZpFv4aFOy7geztsmqZrnHFOse-l_l58xnh8lv8ZZcBbtBf3eaQ_L1PJ1PXvPZ20s1Gc9yxzlPuWUOBKUiSEaXSy0XsrBOW8sDD0FpGpQSpXRBlFawwhZBCe1D4bwOsPCO8SF5PPbuYvu795jMut3Hpj9pWP8oB66V6Ck4Ui62iNEHs4v11sbOUDAHc6Y3Zw7mzMlcH3k4Rmrv_RnXTIEsFP8DuJ9qWQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Huang, Kaixing</creator><creator>Zhou, Chunjie</creator><creator>Tian, Yu-Chu</creator><creator>Yang, Shuanghua</creator><creator>Qin, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3577-3228</orcidid><orcidid>https://orcid.org/0000-0002-8709-5625</orcidid><orcidid>https://orcid.org/0000-0001-5291-5841</orcidid></search><sort><creationdate>20181001</creationdate><title>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</title><author>Huang, Kaixing ; Zhou, Chunjie ; Tian, Yu-Chu ; Yang, Shuanghua ; Qin, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuators</topic><topic>Bayes methods</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Chemical attack</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Electric power distribution</topic><topic>Electric power grids</topic><topic>Hardware-in-the-loop simulation</topic><topic>Hybrid systems</topic><topic>industrial cyber-physical system (ICPS)</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Security</topic><topic>Sensors</topic><topic>stochastic hybrid system (SHS)</topic><topic>Stochastic processes</topic><topic>Water distribution</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kaixing</creatorcontrib><creatorcontrib>Zhou, Chunjie</creatorcontrib><creatorcontrib>Tian, Yu-Chu</creatorcontrib><creatorcontrib>Yang, Shuanghua</creatorcontrib><creatorcontrib>Qin, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kaixing</au><au>Zhou, Chunjie</au><au>Tian, Yu-Chu</au><au>Yang, Shuanghua</au><au>Qin, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>8153</spage><epage>8162</epage><pages>8153-8162</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Industrial cyber-physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grids. However, they face various cyberattacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyberattacks on the physical system of ICPSs. This method helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation test bed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2798605</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3577-3228</orcidid><orcidid>https://orcid.org/0000-0002-8709-5625</orcidid><orcidid>https://orcid.org/0000-0001-5291-5841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2018-10, Vol.65 (10), p.8153-8162 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2046303874 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuators Bayes methods Bayesian Bayesian analysis Chemical attack Computational modeling Computer simulation Cyber-physical systems Cybersecurity Electric power distribution Electric power grids Hardware-in-the-loop simulation Hybrid systems industrial cyber-physical system (ICPS) Risk assessment Risk management Security Sensors stochastic hybrid system (SHS) Stochastic processes Water distribution Water engineering |
title | Assessing the Physical Impact of Cyberattacks on Industrial Cyber-Physical Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Physical%20Impact%20of%20Cyberattacks%20on%20Industrial%20Cyber-Physical%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Huang,%20Kaixing&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=8153&rft.epage=8162&rft.pages=8153-8162&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2798605&rft_dat=%3Cproquest_ieee_%3E2046303874%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a2c04114f521dd85b56ac8aa3f3ff781f77495cf49a426a6f748ef6ce8f0bec23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046303874&rft_id=info:pmid/&rft_ieee_id=8270567&rfr_iscdi=true |