Loading…

Authenticated key agreement scheme for fog-driven IoT healthcare system

The convergence of cloud computing and Internet of Things (IoT) is partially due to the pragmatic need for delivering extended services to a broader user base in diverse situations. However, cloud computing has its limitation for applications requiring low-latency and high mobility, particularly in...

Full description

Saved in:
Bibliographic Details
Published in:Wireless networks 2019-11, Vol.25 (8), p.4737-4750
Main Authors: Jia, Xiaoying, He, Debiao, Kumar, Neeraj, Choo, Kim-Kwang Raymond
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The convergence of cloud computing and Internet of Things (IoT) is partially due to the pragmatic need for delivering extended services to a broader user base in diverse situations. However, cloud computing has its limitation for applications requiring low-latency and high mobility, particularly in adversarial settings (e.g. battlefields). To some extent, such limitations can be mitigated in a fog computing paradigm since the latter bridges the gap between remote cloud data center and the end devices (via some fog nodes). However, fog nodes are often deployed in remote and unprotected places. This necessitates the design of security solutions for a fog-based environment. In this paper, we investigate the fog-driven IoT healthcare system, focusing only on authentication and key agreement. Specifically, we propose a three-party authenticated key agreement protocol from bilinear pairings. We introduce the security model and present the formal security proof, as well as security analysis against common attacks. We then evaluate its performance, in terms of communication and computation costs.
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-018-1759-3