Loading…

Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment

The constrained layer damping materials are thoroughly used to control the vibration duo to their high capacity to dissipate vibration energy. Researchers have handled the vibration and damping behavior of the constrained layer damping structures accurately. However, for the constrained layer dampin...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2018-06, Vol.232 (8), p.1529-1541
Main Authors: Gao, Pei-xin, Zhai, Jing-yu, Qu, Fu-zheng, Han, Qing-kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The constrained layer damping materials are thoroughly used to control the vibration duo to their high capacity to dissipate vibration energy. Researchers have handled the vibration and damping behavior of the constrained layer damping structures accurately. However, for the constrained layer damping pipeline conveying fluid, there are few works on the investigation of the vibration characteristics. This paper is aimed to investigate the vibration and damping characteristics of the constrained layer damping pipeline conveying fluid under elastic boundary supports. Considering the fluid–structure interaction, the developed finite element method is employed to establish the motion equations of the constrained layer damping pipeline. The influence of the support stiffness, the fluid velocity and pressure, the thickness and the elasticity modulus of viscoelastic, and constraining layer parameters are all considered. The results indicate that an appropriate selection of the boundary support stiffness, the viscoelastic, and constraining layer parameters can obtain desirable modal properties, which can provide an efficient tool in the design and maintenance of aerospace pipeline for passive vibration control.
ISSN:0954-4100
2041-3025
DOI:10.1177/0954410017692367