Loading…
Load relief control of launch vehicle using aerodynamic angle estimation
A nonlinear closed-loop load relief scheme is proposed to reduce the aerodynamic load during the ascent phase of a launch vehicle. The proposed controller is designed based on a back-stepping and sliding-mode control scheme with aerodynamic angle feedback. A hybrid load-relief strategy using the loa...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2018-06, Vol.232 (8), p.1598-1605 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nonlinear closed-loop load relief scheme is proposed to reduce the aerodynamic load during the ascent phase of a launch vehicle. The proposed controller is designed based on a back-stepping and sliding-mode control scheme with aerodynamic angle feedback. A hybrid load-relief strategy using the load relief scheme around the period of the maximum dynamic pressure and the traditional minimum-drift scheme during the other period is proposed. An aerodynamic angle estimator is also developed using a Kalman filter for the feedback of the load relief control. Numerical simulation is conducted to demonstrate the performance of the proposed strategy as well as the potential benefits. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/0954410017699435 |