Loading…

An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices

Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner ma...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied and computational mathematics 2018-06, Vol.4 (3), p.1-8, Article 96
Main Authors: Salkuyeh, Davod Khojasteh, Beik, Fatemeh Panjeh Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3
cites cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3
container_end_page 8
container_issue 3
container_start_page 1
container_title International journal of applied and computational mathematics
container_volume 4
creator Salkuyeh, Davod Khojasteh
Beik, Fatemeh Panjeh Ali
description Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.
doi_str_mv 10.1007/s40819-018-0527-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047358301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047358301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EElXpB3CzxDngtePYOValhaIiLnC2HMemqdK42AnQv8dVkDhx2tnVzKz0ELoGcguEiLuYEwllRkBmhFOR8TM0oVCWGRdlcZ40y5MGwi7RLMYdIYRCLgiVE_Q07_Dy-9A2punxyof90GrsfMD91uJ192lDtNg7PA_Bf22trrHuanzvh6o9jkf8rPvQGBuv0IXTbbSz3zlFb6vl6-Ix27w8rBfzTWYoA55BwUyRa1NpWhVGQ20lMAngnCZVXnLQpS1EkddEMKGNAUfTQl0pJRfOOTZFN2PvIfiPwcZe7fwQuvRSUZILxiUjkFwwukzwMQbr1CE0ex2OCog6UVMjNZWoqRM1xVOGjpmYvN27DX_N_4d-AMZobf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047358301</pqid></control><display><type>article</type><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><source>Springer Nature</source><creator>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</creator><creatorcontrib>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</creatorcontrib><description>Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-018-0527-5</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2018-06, Vol.4 (3), p.1-8, Article 96</ispartof><rights>Springer (India) Private Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</citedby><cites>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</cites><orcidid>0000-0003-0228-8565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salkuyeh, Davod Khojasteh</creatorcontrib><creatorcontrib>Beik, Fatemeh Panjeh Ali</creatorcontrib><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EElXpB3CzxDngtePYOValhaIiLnC2HMemqdK42AnQv8dVkDhx2tnVzKz0ELoGcguEiLuYEwllRkBmhFOR8TM0oVCWGRdlcZ40y5MGwi7RLMYdIYRCLgiVE_Q07_Dy-9A2punxyof90GrsfMD91uJ192lDtNg7PA_Bf22trrHuanzvh6o9jkf8rPvQGBuv0IXTbbSz3zlFb6vl6-Ix27w8rBfzTWYoA55BwUyRa1NpWhVGQ20lMAngnCZVXnLQpS1EkddEMKGNAUfTQl0pJRfOOTZFN2PvIfiPwcZe7fwQuvRSUZILxiUjkFwwukzwMQbr1CE0ex2OCog6UVMjNZWoqRM1xVOGjpmYvN27DX_N_4d-AMZobf0</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Salkuyeh, Davod Khojasteh</creator><creator>Beik, Fatemeh Panjeh Ali</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0228-8565</orcidid></search><sort><creationdate>20180601</creationdate><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><author>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salkuyeh, Davod Khojasteh</creatorcontrib><creatorcontrib>Beik, Fatemeh Panjeh Ali</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salkuyeh, Davod Khojasteh</au><au>Beik, Fatemeh Panjeh Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>4</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>96</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-018-0527-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0228-8565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2018-06, Vol.4 (3), p.1-8, Article 96
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2047358301
source Springer Nature
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
title An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Formula%20for%20the%20Inverse%20of%20Arrowhead%20and%20Doubly%20Arrow%20Matrices&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Salkuyeh,%20Davod%20Khojasteh&rft.date=2018-06-01&rft.volume=4&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=96&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-018-0527-5&rft_dat=%3Cproquest_cross%3E2047358301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047358301&rft_id=info:pmid/&rfr_iscdi=true