Loading…
An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices
Najafi et al. (Appl Math Lett 33:1–5, 2014 ) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner ma...
Saved in:
Published in: | International journal of applied and computational mathematics 2018-06, Vol.4 (3), p.1-8, Article 96 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3 |
container_end_page | 8 |
container_issue | 3 |
container_start_page | 1 |
container_title | International journal of applied and computational mathematics |
container_volume | 4 |
creator | Salkuyeh, Davod Khojasteh Beik, Fatemeh Panjeh Ali |
description | Najafi et al. (Appl Math Lett 33:1–5,
2014
) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies. |
doi_str_mv | 10.1007/s40819-018-0527-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047358301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047358301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EElXpB3CzxDngtePYOValhaIiLnC2HMemqdK42AnQv8dVkDhx2tnVzKz0ELoGcguEiLuYEwllRkBmhFOR8TM0oVCWGRdlcZ40y5MGwi7RLMYdIYRCLgiVE_Q07_Dy-9A2punxyof90GrsfMD91uJ192lDtNg7PA_Bf22trrHuanzvh6o9jkf8rPvQGBuv0IXTbbSz3zlFb6vl6-Ix27w8rBfzTWYoA55BwUyRa1NpWhVGQ20lMAngnCZVXnLQpS1EkddEMKGNAUfTQl0pJRfOOTZFN2PvIfiPwcZe7fwQuvRSUZILxiUjkFwwukzwMQbr1CE0ex2OCog6UVMjNZWoqRM1xVOGjpmYvN27DX_N_4d-AMZobf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047358301</pqid></control><display><type>article</type><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><source>Springer Nature</source><creator>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</creator><creatorcontrib>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</creatorcontrib><description>Najafi et al. (Appl Math Lett 33:1–5,
2014
) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-018-0527-5</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2018-06, Vol.4 (3), p.1-8, Article 96</ispartof><rights>Springer (India) Private Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</citedby><cites>FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</cites><orcidid>0000-0003-0228-8565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salkuyeh, Davod Khojasteh</creatorcontrib><creatorcontrib>Beik, Fatemeh Panjeh Ali</creatorcontrib><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Najafi et al. (Appl Math Lett 33:1–5,
2014
) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EElXpB3CzxDngtePYOValhaIiLnC2HMemqdK42AnQv8dVkDhx2tnVzKz0ELoGcguEiLuYEwllRkBmhFOR8TM0oVCWGRdlcZ40y5MGwi7RLMYdIYRCLgiVE_Q07_Dy-9A2punxyof90GrsfMD91uJ192lDtNg7PA_Bf22trrHuanzvh6o9jkf8rPvQGBuv0IXTbbSz3zlFb6vl6-Ix27w8rBfzTWYoA55BwUyRa1NpWhVGQ20lMAngnCZVXnLQpS1EkddEMKGNAUfTQl0pJRfOOTZFN2PvIfiPwcZe7fwQuvRSUZILxiUjkFwwukzwMQbr1CE0ex2OCog6UVMjNZWoqRM1xVOGjpmYvN27DX_N_4d-AMZobf0</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Salkuyeh, Davod Khojasteh</creator><creator>Beik, Fatemeh Panjeh Ali</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0228-8565</orcidid></search><sort><creationdate>20180601</creationdate><title>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</title><author>Salkuyeh, Davod Khojasteh ; Beik, Fatemeh Panjeh Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salkuyeh, Davod Khojasteh</creatorcontrib><creatorcontrib>Beik, Fatemeh Panjeh Ali</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salkuyeh, Davod Khojasteh</au><au>Beik, Fatemeh Panjeh Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>4</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>96</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Najafi et al. (Appl Math Lett 33:1–5,
2014
) have elaborated an approach to compute the inverse of arrowhead matrices. This paper concerns with offering an alternative simple and neat framework to obtain an explicit formula for the inverse of arrowhead matrices. More precisely, the adopted manner makes us capable to derive the inverse of block arrowhead matrices. In addition, we propound a strategy to reckon the inverse of doubly arrow matrices. Finally illustrative examples are examined which reveal the applicability and feasibly of the handled strategies.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-018-0527-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0228-8565</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2018-06, Vol.4 (3), p.1-8, Article 96 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2047358301 |
source | Springer Nature |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical |
title | An Explicit Formula for the Inverse of Arrowhead and Doubly Arrow Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Formula%20for%20the%20Inverse%20of%20Arrowhead%20and%20Doubly%20Arrow%20Matrices&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Salkuyeh,%20Davod%20Khojasteh&rft.date=2018-06-01&rft.volume=4&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=96&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-018-0527-5&rft_dat=%3Cproquest_cross%3E2047358301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2315-163c64acba2b6ca1de813811ffa0b4951a9e6764d0737acc1f264d2f98857fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047358301&rft_id=info:pmid/&rfr_iscdi=true |