Loading…
Synapse‐Like Organic Thin Film Memristors
Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with con...
Saved in:
Published in: | Advanced functional materials 2018-05, Vol.28 (22), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763 |
---|---|
cites | cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763 |
container_end_page | n/a |
container_issue | 22 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Zhong, Ya‐Nan Wang, Tian Gao, Xu Xu, Jian‐Long Wang, Sui‐Dong |
description | Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity.
Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity. |
doi_str_mv | 10.1002/adfm.201800854 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047461306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047461306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQC0EEqWwMkdiRAl3PtdJx6oQQGrVgSKxWU5ig0uTFLtV1Y1P4Bv5EloVlZHpbnjvTnqMXSIkCMBvdGXrhANmAFlPHLEOSpQxAc-ODzu-nLKzEGYAmKYkOuz6adPoRTDfn18j926iiX_VjSuj6ZtrotzN62hsau_CsvXhnJ1YPQ_m4nd22XN-Nx0-xKPJ_eNwMIpLwlTEXOueKKoeoSXSSMKYQgARWQ2FNH2jOVpZ8BQk55gJRM2trSpOXEqdSuqyq_3dhW8_ViYs1axd-Wb7UnEQqZBIsKOSPVX6NgRvrFp4V2u_UQhqF0TtgqhDkK3Q3wtrNzebf2g1uM3Hf-4PWXljRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047461306</pqid></control><display><type>article</type><title>Synapse‐Like Organic Thin Film Memristors</title><source>Wiley</source><creator>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</creator><creatorcontrib>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</creatorcontrib><description>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity.
Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>analog memory ; Computer memory ; Current modulation ; Electronic devices ; Materials science ; Memristors ; organic thin films ; Plastic properties ; Synapses ; Thin films</subject><ispartof>Advanced functional materials, 2018-05, Vol.28 (22), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</citedby><cites>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</cites><orcidid>0000-0002-4761-4793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhong, Ya‐Nan</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Xu, Jian‐Long</creatorcontrib><creatorcontrib>Wang, Sui‐Dong</creatorcontrib><title>Synapse‐Like Organic Thin Film Memristors</title><title>Advanced functional materials</title><description>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity.
Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</description><subject>analog memory</subject><subject>Computer memory</subject><subject>Current modulation</subject><subject>Electronic devices</subject><subject>Materials science</subject><subject>Memristors</subject><subject>organic thin films</subject><subject>Plastic properties</subject><subject>Synapses</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQQC0EEqWwMkdiRAl3PtdJx6oQQGrVgSKxWU5ig0uTFLtV1Y1P4Bv5EloVlZHpbnjvTnqMXSIkCMBvdGXrhANmAFlPHLEOSpQxAc-ODzu-nLKzEGYAmKYkOuz6adPoRTDfn18j926iiX_VjSuj6ZtrotzN62hsau_CsvXhnJ1YPQ_m4nd22XN-Nx0-xKPJ_eNwMIpLwlTEXOueKKoeoSXSSMKYQgARWQ2FNH2jOVpZ8BQk55gJRM2trSpOXEqdSuqyq_3dhW8_ViYs1axd-Wb7UnEQqZBIsKOSPVX6NgRvrFp4V2u_UQhqF0TtgqhDkK3Q3wtrNzebf2g1uM3Hf-4PWXljRw</recordid><startdate>20180530</startdate><enddate>20180530</enddate><creator>Zhong, Ya‐Nan</creator><creator>Wang, Tian</creator><creator>Gao, Xu</creator><creator>Xu, Jian‐Long</creator><creator>Wang, Sui‐Dong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></search><sort><creationdate>20180530</creationdate><title>Synapse‐Like Organic Thin Film Memristors</title><author>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>analog memory</topic><topic>Computer memory</topic><topic>Current modulation</topic><topic>Electronic devices</topic><topic>Materials science</topic><topic>Memristors</topic><topic>organic thin films</topic><topic>Plastic properties</topic><topic>Synapses</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ya‐Nan</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Xu, Jian‐Long</creatorcontrib><creatorcontrib>Wang, Sui‐Dong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ya‐Nan</au><au>Wang, Tian</au><au>Gao, Xu</au><au>Xu, Jian‐Long</au><au>Wang, Sui‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapse‐Like Organic Thin Film Memristors</atitle><jtitle>Advanced functional materials</jtitle><date>2018-05-30</date><risdate>2018</risdate><volume>28</volume><issue>22</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity.
Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800854</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-05, Vol.28 (22), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2047461306 |
source | Wiley |
subjects | analog memory Computer memory Current modulation Electronic devices Materials science Memristors organic thin films Plastic properties Synapses Thin films |
title | Synapse‐Like Organic Thin Film Memristors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapse%E2%80%90Like%20Organic%20Thin%20Film%20Memristors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Ya%E2%80%90Nan&rft.date=2018-05-30&rft.volume=28&rft.issue=22&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800854&rft_dat=%3Cproquest_cross%3E2047461306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047461306&rft_id=info:pmid/&rfr_iscdi=true |