Loading…

Synapse‐Like Organic Thin Film Memristors

Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with con...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-05, Vol.28 (22), p.n/a
Main Authors: Zhong, Ya‐Nan, Wang, Tian, Gao, Xu, Xu, Jian‐Long, Wang, Sui‐Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763
cites cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced functional materials
container_volume 28
creator Zhong, Ya‐Nan
Wang, Tian
Gao, Xu
Xu, Jian‐Long
Wang, Sui‐Dong
description Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity. Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.
doi_str_mv 10.1002/adfm.201800854
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047461306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047461306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQC0EEqWwMkdiRAl3PtdJx6oQQGrVgSKxWU5ig0uTFLtV1Y1P4Bv5EloVlZHpbnjvTnqMXSIkCMBvdGXrhANmAFlPHLEOSpQxAc-ODzu-nLKzEGYAmKYkOuz6adPoRTDfn18j926iiX_VjSuj6ZtrotzN62hsau_CsvXhnJ1YPQ_m4nd22XN-Nx0-xKPJ_eNwMIpLwlTEXOueKKoeoSXSSMKYQgARWQ2FNH2jOVpZ8BQk55gJRM2trSpOXEqdSuqyq_3dhW8_ViYs1axd-Wb7UnEQqZBIsKOSPVX6NgRvrFp4V2u_UQhqF0TtgqhDkK3Q3wtrNzebf2g1uM3Hf-4PWXljRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047461306</pqid></control><display><type>article</type><title>Synapse‐Like Organic Thin Film Memristors</title><source>Wiley</source><creator>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</creator><creatorcontrib>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</creatorcontrib><description>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity. Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>analog memory ; Computer memory ; Current modulation ; Electronic devices ; Materials science ; Memristors ; organic thin films ; Plastic properties ; Synapses ; Thin films</subject><ispartof>Advanced functional materials, 2018-05, Vol.28 (22), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</citedby><cites>FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</cites><orcidid>0000-0002-4761-4793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhong, Ya‐Nan</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Xu, Jian‐Long</creatorcontrib><creatorcontrib>Wang, Sui‐Dong</creatorcontrib><title>Synapse‐Like Organic Thin Film Memristors</title><title>Advanced functional materials</title><description>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity. Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</description><subject>analog memory</subject><subject>Computer memory</subject><subject>Current modulation</subject><subject>Electronic devices</subject><subject>Materials science</subject><subject>Memristors</subject><subject>organic thin films</subject><subject>Plastic properties</subject><subject>Synapses</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQQC0EEqWwMkdiRAl3PtdJx6oQQGrVgSKxWU5ig0uTFLtV1Y1P4Bv5EloVlZHpbnjvTnqMXSIkCMBvdGXrhANmAFlPHLEOSpQxAc-ODzu-nLKzEGYAmKYkOuz6adPoRTDfn18j926iiX_VjSuj6ZtrotzN62hsau_CsvXhnJ1YPQ_m4nd22XN-Nx0-xKPJ_eNwMIpLwlTEXOueKKoeoSXSSMKYQgARWQ2FNH2jOVpZ8BQk55gJRM2trSpOXEqdSuqyq_3dhW8_ViYs1axd-Wb7UnEQqZBIsKOSPVX6NgRvrFp4V2u_UQhqF0TtgqhDkK3Q3wtrNzebf2g1uM3Hf-4PWXljRw</recordid><startdate>20180530</startdate><enddate>20180530</enddate><creator>Zhong, Ya‐Nan</creator><creator>Wang, Tian</creator><creator>Gao, Xu</creator><creator>Xu, Jian‐Long</creator><creator>Wang, Sui‐Dong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></search><sort><creationdate>20180530</creationdate><title>Synapse‐Like Organic Thin Film Memristors</title><author>Zhong, Ya‐Nan ; Wang, Tian ; Gao, Xu ; Xu, Jian‐Long ; Wang, Sui‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>analog memory</topic><topic>Computer memory</topic><topic>Current modulation</topic><topic>Electronic devices</topic><topic>Materials science</topic><topic>Memristors</topic><topic>organic thin films</topic><topic>Plastic properties</topic><topic>Synapses</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ya‐Nan</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Xu, Jian‐Long</creatorcontrib><creatorcontrib>Wang, Sui‐Dong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ya‐Nan</au><au>Wang, Tian</au><au>Gao, Xu</au><au>Xu, Jian‐Long</au><au>Wang, Sui‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapse‐Like Organic Thin Film Memristors</atitle><jtitle>Advanced functional materials</jtitle><date>2018-05-30</date><risdate>2018</risdate><volume>28</volume><issue>22</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Exploring new type of synapse–like electronic devices with fusion of computing and memory is a promising strategy to fundamentally approach to intelligent machines. Herein, organic thin film memristors (OTFMs) are achieved, functioning as electrically programmable and erasable analog memory with continuous and nonvolatile device states. The memristive characteristics of OTFMs stem from the asymmetric electrode configuration and the cumulative charge trapping/detrapping in a polymer electret layer, which enables the state–dependent current modulation analogous to the synaptic weight change in biological synapses. OTFMs are demonstrated to successfully emulate the essential synaptic functions, including the reversible potentiation and depression, and the short‐term plasticity such as the paired‐pulse facilitation and the long‐term plasticity such as the spike–timing dependent plasticity. Organic thin film memristors are achieved based on asymmetric electrode configuration and cumulative charge trapping/detrapping in a polymer electret layer, which function as electrically editable and preservable analog memory. Organic thin film memristors are demonstrated to be capable of emulating both short‐term and long‐term synaptic plasticity, such as the paired‐pulse facilitation and spike‐timing‐dependent plasticity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800854</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4761-4793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-05, Vol.28 (22), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2047461306
source Wiley
subjects analog memory
Computer memory
Current modulation
Electronic devices
Materials science
Memristors
organic thin films
Plastic properties
Synapses
Thin films
title Synapse‐Like Organic Thin Film Memristors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapse%E2%80%90Like%20Organic%20Thin%20Film%20Memristors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Ya%E2%80%90Nan&rft.date=2018-05-30&rft.volume=28&rft.issue=22&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800854&rft_dat=%3Cproquest_cross%3E2047461306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3174-2aa54bd531f33a134eeb40333fa0b6e9ea21f6b27062218411a2ffdd23266a763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2047461306&rft_id=info:pmid/&rfr_iscdi=true