Loading…

Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions

Balanced applications of nitrogen (N), phosphorus (P), and potassium (K) are known to increase grain yield of wheat but the impact of the interactions among N, P, and K on root growth and nitrogen use efficiency (NUE) have not been proven. The aim of this study was to investigate the effect of balan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant nutrition and soil science 2018-06, Vol.181 (3), p.364-373
Main Authors: Duncan, Elliott G., O'Sullivan, Cathryn A., Roper, Margaret M., Palta, Jairo, Whisson, Kelley, Peoples, Mark B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Balanced applications of nitrogen (N), phosphorus (P), and potassium (K) are known to increase grain yield of wheat but the impact of the interactions among N, P, and K on root growth and nitrogen use efficiency (NUE) have not been proven. The aim of this study was to investigate the effect of balanced applications of N, P, and K on the rooting patterns and NUE of wheat. Two glasshouse experiments were conducted. A rhizobox study was used to assess the impact of interactions among N, P, and K fertilisers on total root length, biomass, specific root length, root length density, N use efficiency (NUE), and N uptake efficiency of the shoots (NUpEshoot) and N nutrition index. In a separate pot study, plants were grown to maturity to confirm the effect of the observed changes in root growth on NUE, NUpEgrain, and grain/biomass yield. In the rhizobox experiment when plants were supplied with N+P+K, total root biomass increased approximately six‐fold relative to plants grown with N alone or with no fertiliser. Plants exposed to N+P+K had NUpEshoot and NUE values that were five and ten times higher, respectively, than plants that received just fertiliser N. Plants supplied with N+P or N+P+K had N nutrition indices close to one (N‐adequate), while plants that only received N had an index of 0.62 (N‐deficient). The pot study confirmed that the changes in root length and biomass in plants exposed to N+P+K resulted in significant increases in NUE, NUpEgrain, shoot biomass, and grain yield at maturity. Interactions among fertiliser N, P, and K played a critical role in influencing root biomass and length, which was associated with increases in NUE, NUpEshoot and NUpEgrain.
ISSN:1436-8730
1522-2624
DOI:10.1002/jpln.201700376