Loading…

Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes

The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resultin...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2018-06, Vol.28 (23), p.n/a
Main Authors: Istif, Emin, Hernández‐Ferrer, Javier, Urriolabeitia, Esteban P., Stergiou, Anastasios, Tagmatarchis, Nikos, Fratta, Giuseppe, Large, Matthew J., Dalton, Alan B., Benito, Ana M., Maser, Wolfgang K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3
cites cdi_FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced functional materials
container_volume 28
creator Istif, Emin
Hernández‐Ferrer, Javier
Urriolabeitia, Esteban P.
Stergiou, Anastasios
Tagmatarchis, Nikos
Fratta, Giuseppe
Large, Matthew J.
Dalton, Alan B.
Benito, Ana M.
Maser, Wolfgang K.
description The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resulting in P3HT nanoparticles (P3HTNPs) with sizes of 50–100 nm in intimate contact with GO. During the self‐assembly process, GO changes the crystalline packing of P3HT chains in the forming P3HTNPs from H to H/J aggregates exhibiting exciton coupling constants as low as 2 meV, indicating favorable charge separation along the P3HT chains. Concomitantly, π–π interface interactions between the P3HTNPs and GO sheets are established resulting in the creation of P3HTNPs–GO charge‐transfer complexes whose energy bandgaps are lowered by up to 0.5 eV. Moreover, their optoelectronic properties, preestablished in the liquid phase, are retained when processed into thin films from the stable aqueous dispersions, thus eliminating the critical dependency on external processing parameters. These results can be transferred to other types of conjugated polymers. Combined with the possibility of employing water based “green” processing technologies, charge‐transfer complexes of conjugated polymer nanoparticles and GO open new pathways for the fabrication of improved optoelectronic thin film devices. Nanoparticles of conjugated polymer poly(3‐hexylthiophene) self‐assembled in the presence of graphene oxide reveal an internal aggregate structure with significantly reduced excitonic coupling constants, which concomitantly favors π–π interactions with graphene oxide sheets toward the formation of a charge‐transfer complex with reduced energy bandgaps and enhanced photoactivity.
doi_str_mv 10.1002/adfm.201707548
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049618545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049618545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRMEa3rgdcT-znPJZhNFGIxkUEd01lujqZMC-7E0x2foLgH_olTojo0lVdinOr4BByyeiAUcqvwdhqwCmLaaxkckR6LGJRKChPjn8zezklZ96vaIfFQvbIJGvq1WYBazTBU1PuKnTBI9RNC25d5CV-vX-OHbRLrDGYbguDQbYEt-j2HzMHtbcdnzVVW-IW_Tk5sVB6vPiZffI8up1ld-FkOr7PhpMwFypOQsUNcGUwyoVkc4PK5giWpjHkhqPFhAJIDnObmhQSIZUSiknBaMSMkvFc9MnV4W7rmtcN-rVeNRtXdy81pzKNWKKk6qjBgcpd471Dq1tXVOB2mlG9N6b3xvSvsa6QHgpvRYm7f2g9vBk9_HW_AYw6cmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049618545</pqid></control><display><type>article</type><title>Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes</title><source>Wiley</source><creator>Istif, Emin ; Hernández‐Ferrer, Javier ; Urriolabeitia, Esteban P. ; Stergiou, Anastasios ; Tagmatarchis, Nikos ; Fratta, Giuseppe ; Large, Matthew J. ; Dalton, Alan B. ; Benito, Ana M. ; Maser, Wolfgang K.</creator><creatorcontrib>Istif, Emin ; Hernández‐Ferrer, Javier ; Urriolabeitia, Esteban P. ; Stergiou, Anastasios ; Tagmatarchis, Nikos ; Fratta, Giuseppe ; Large, Matthew J. ; Dalton, Alan B. ; Benito, Ana M. ; Maser, Wolfgang K.</creatorcontrib><description>The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resulting in P3HT nanoparticles (P3HTNPs) with sizes of 50–100 nm in intimate contact with GO. During the self‐assembly process, GO changes the crystalline packing of P3HT chains in the forming P3HTNPs from H to H/J aggregates exhibiting exciton coupling constants as low as 2 meV, indicating favorable charge separation along the P3HT chains. Concomitantly, π–π interface interactions between the P3HTNPs and GO sheets are established resulting in the creation of P3HTNPs–GO charge‐transfer complexes whose energy bandgaps are lowered by up to 0.5 eV. Moreover, their optoelectronic properties, preestablished in the liquid phase, are retained when processed into thin films from the stable aqueous dispersions, thus eliminating the critical dependency on external processing parameters. These results can be transferred to other types of conjugated polymers. Combined with the possibility of employing water based “green” processing technologies, charge‐transfer complexes of conjugated polymer nanoparticles and GO open new pathways for the fabrication of improved optoelectronic thin film devices. Nanoparticles of conjugated polymer poly(3‐hexylthiophene) self‐assembled in the presence of graphene oxide reveal an internal aggregate structure with significantly reduced excitonic coupling constants, which concomitantly favors π–π interactions with graphene oxide sheets toward the formation of a charge‐transfer complex with reduced energy bandgaps and enhanced photoactivity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201707548</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biopolymers ; Charge transfer ; charge‐transfer complexes ; conjugated polymers ; Dependence ; Energy gap ; Graphene ; graphene oxide ; Identification ; Materials science ; Nanoparticles ; Optoelectronic devices ; Polymers ; Process parameters ; self‐assembly ; Thin films</subject><ispartof>Advanced functional materials, 2018-06, Vol.28 (23), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3</citedby><cites>FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3</cites><orcidid>0000-0001-8043-1377 ; 0000-0002-8654-7386 ; 0000-0002-6586-6935 ; 0000-0003-2597-4314 ; 0000-0003-4700-7050 ; 0000-0001-9779-5820 ; 0000-0001-7903-1659 ; 0000-0001-7590-4635 ; 0000-0003-0194-7426 ; 0000-0003-4253-0758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Istif, Emin</creatorcontrib><creatorcontrib>Hernández‐Ferrer, Javier</creatorcontrib><creatorcontrib>Urriolabeitia, Esteban P.</creatorcontrib><creatorcontrib>Stergiou, Anastasios</creatorcontrib><creatorcontrib>Tagmatarchis, Nikos</creatorcontrib><creatorcontrib>Fratta, Giuseppe</creatorcontrib><creatorcontrib>Large, Matthew J.</creatorcontrib><creatorcontrib>Dalton, Alan B.</creatorcontrib><creatorcontrib>Benito, Ana M.</creatorcontrib><creatorcontrib>Maser, Wolfgang K.</creatorcontrib><title>Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes</title><title>Advanced functional materials</title><description>The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resulting in P3HT nanoparticles (P3HTNPs) with sizes of 50–100 nm in intimate contact with GO. During the self‐assembly process, GO changes the crystalline packing of P3HT chains in the forming P3HTNPs from H to H/J aggregates exhibiting exciton coupling constants as low as 2 meV, indicating favorable charge separation along the P3HT chains. Concomitantly, π–π interface interactions between the P3HTNPs and GO sheets are established resulting in the creation of P3HTNPs–GO charge‐transfer complexes whose energy bandgaps are lowered by up to 0.5 eV. Moreover, their optoelectronic properties, preestablished in the liquid phase, are retained when processed into thin films from the stable aqueous dispersions, thus eliminating the critical dependency on external processing parameters. These results can be transferred to other types of conjugated polymers. Combined with the possibility of employing water based “green” processing technologies, charge‐transfer complexes of conjugated polymer nanoparticles and GO open new pathways for the fabrication of improved optoelectronic thin film devices. Nanoparticles of conjugated polymer poly(3‐hexylthiophene) self‐assembled in the presence of graphene oxide reveal an internal aggregate structure with significantly reduced excitonic coupling constants, which concomitantly favors π–π interactions with graphene oxide sheets toward the formation of a charge‐transfer complex with reduced energy bandgaps and enhanced photoactivity.</description><subject>Biopolymers</subject><subject>Charge transfer</subject><subject>charge‐transfer complexes</subject><subject>conjugated polymers</subject><subject>Dependence</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Identification</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Optoelectronic devices</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>self‐assembly</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKA0EQRRtRMEa3rgdcT-znPJZhNFGIxkUEd01lujqZMC-7E0x2foLgH_olTojo0lVdinOr4BByyeiAUcqvwdhqwCmLaaxkckR6LGJRKChPjn8zezklZ96vaIfFQvbIJGvq1WYBazTBU1PuKnTBI9RNC25d5CV-vX-OHbRLrDGYbguDQbYEt-j2HzMHtbcdnzVVW-IW_Tk5sVB6vPiZffI8up1ld-FkOr7PhpMwFypOQsUNcGUwyoVkc4PK5giWpjHkhqPFhAJIDnObmhQSIZUSiknBaMSMkvFc9MnV4W7rmtcN-rVeNRtXdy81pzKNWKKk6qjBgcpd471Dq1tXVOB2mlG9N6b3xvSvsa6QHgpvRYm7f2g9vBk9_HW_AYw6cmY</recordid><startdate>20180606</startdate><enddate>20180606</enddate><creator>Istif, Emin</creator><creator>Hernández‐Ferrer, Javier</creator><creator>Urriolabeitia, Esteban P.</creator><creator>Stergiou, Anastasios</creator><creator>Tagmatarchis, Nikos</creator><creator>Fratta, Giuseppe</creator><creator>Large, Matthew J.</creator><creator>Dalton, Alan B.</creator><creator>Benito, Ana M.</creator><creator>Maser, Wolfgang K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8043-1377</orcidid><orcidid>https://orcid.org/0000-0002-8654-7386</orcidid><orcidid>https://orcid.org/0000-0002-6586-6935</orcidid><orcidid>https://orcid.org/0000-0003-2597-4314</orcidid><orcidid>https://orcid.org/0000-0003-4700-7050</orcidid><orcidid>https://orcid.org/0000-0001-9779-5820</orcidid><orcidid>https://orcid.org/0000-0001-7903-1659</orcidid><orcidid>https://orcid.org/0000-0001-7590-4635</orcidid><orcidid>https://orcid.org/0000-0003-0194-7426</orcidid><orcidid>https://orcid.org/0000-0003-4253-0758</orcidid></search><sort><creationdate>20180606</creationdate><title>Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes</title><author>Istif, Emin ; Hernández‐Ferrer, Javier ; Urriolabeitia, Esteban P. ; Stergiou, Anastasios ; Tagmatarchis, Nikos ; Fratta, Giuseppe ; Large, Matthew J. ; Dalton, Alan B. ; Benito, Ana M. ; Maser, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biopolymers</topic><topic>Charge transfer</topic><topic>charge‐transfer complexes</topic><topic>conjugated polymers</topic><topic>Dependence</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Identification</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Optoelectronic devices</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>self‐assembly</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Istif, Emin</creatorcontrib><creatorcontrib>Hernández‐Ferrer, Javier</creatorcontrib><creatorcontrib>Urriolabeitia, Esteban P.</creatorcontrib><creatorcontrib>Stergiou, Anastasios</creatorcontrib><creatorcontrib>Tagmatarchis, Nikos</creatorcontrib><creatorcontrib>Fratta, Giuseppe</creatorcontrib><creatorcontrib>Large, Matthew J.</creatorcontrib><creatorcontrib>Dalton, Alan B.</creatorcontrib><creatorcontrib>Benito, Ana M.</creatorcontrib><creatorcontrib>Maser, Wolfgang K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Istif, Emin</au><au>Hernández‐Ferrer, Javier</au><au>Urriolabeitia, Esteban P.</au><au>Stergiou, Anastasios</au><au>Tagmatarchis, Nikos</au><au>Fratta, Giuseppe</au><au>Large, Matthew J.</au><au>Dalton, Alan B.</au><au>Benito, Ana M.</au><au>Maser, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes</atitle><jtitle>Advanced functional materials</jtitle><date>2018-06-06</date><risdate>2018</risdate><volume>28</volume><issue>23</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The game‐changing role of graphene oxide (GO) in tuning the excitonic behavior of conjugated polymer nanoparticles is described for the first time. This is demonstrated by using poly(3‐hexylthiophene) (P3HT) as a benchmark conjugated polymer and employing an in situ reprecipitation approach resulting in P3HT nanoparticles (P3HTNPs) with sizes of 50–100 nm in intimate contact with GO. During the self‐assembly process, GO changes the crystalline packing of P3HT chains in the forming P3HTNPs from H to H/J aggregates exhibiting exciton coupling constants as low as 2 meV, indicating favorable charge separation along the P3HT chains. Concomitantly, π–π interface interactions between the P3HTNPs and GO sheets are established resulting in the creation of P3HTNPs–GO charge‐transfer complexes whose energy bandgaps are lowered by up to 0.5 eV. Moreover, their optoelectronic properties, preestablished in the liquid phase, are retained when processed into thin films from the stable aqueous dispersions, thus eliminating the critical dependency on external processing parameters. These results can be transferred to other types of conjugated polymers. Combined with the possibility of employing water based “green” processing technologies, charge‐transfer complexes of conjugated polymer nanoparticles and GO open new pathways for the fabrication of improved optoelectronic thin film devices. Nanoparticles of conjugated polymer poly(3‐hexylthiophene) self‐assembled in the presence of graphene oxide reveal an internal aggregate structure with significantly reduced excitonic coupling constants, which concomitantly favors π–π interactions with graphene oxide sheets toward the formation of a charge‐transfer complex with reduced energy bandgaps and enhanced photoactivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201707548</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8043-1377</orcidid><orcidid>https://orcid.org/0000-0002-8654-7386</orcidid><orcidid>https://orcid.org/0000-0002-6586-6935</orcidid><orcidid>https://orcid.org/0000-0003-2597-4314</orcidid><orcidid>https://orcid.org/0000-0003-4700-7050</orcidid><orcidid>https://orcid.org/0000-0001-9779-5820</orcidid><orcidid>https://orcid.org/0000-0001-7903-1659</orcidid><orcidid>https://orcid.org/0000-0001-7590-4635</orcidid><orcidid>https://orcid.org/0000-0003-0194-7426</orcidid><orcidid>https://orcid.org/0000-0003-4253-0758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-06, Vol.28 (23), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2049618545
source Wiley
subjects Biopolymers
Charge transfer
charge‐transfer complexes
conjugated polymers
Dependence
Energy gap
Graphene
graphene oxide
Identification
Materials science
Nanoparticles
Optoelectronic devices
Polymers
Process parameters
self‐assembly
Thin films
title Conjugated Polymer Nanoparticle–Graphene Oxide Charge‐Transfer Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20Polymer%20Nanoparticle%E2%80%93Graphene%20Oxide%20Charge%E2%80%90Transfer%20Complexes&rft.jtitle=Advanced%20functional%20materials&rft.au=Istif,%20Emin&rft.date=2018-06-06&rft.volume=28&rft.issue=23&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201707548&rft_dat=%3Cproquest_cross%3E2049618545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-52da25de6c341bde5fceaf097acd2efe80aa42abf9d9a83455351431061d547b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049618545&rft_id=info:pmid/&rfr_iscdi=true