Loading…

Deep komatiite signature in cratonic mantle pyroxenite

We present new and compiled whole‐rock modal mineral, major and trace element data from extremely melt depleted but pyroxenite and garnet(‐ite)‐bearing Palaeoarchean East Greenland cratonic mantle, exposed as three isolated, tectonically strained orogenic peridotite bodies (Ugelvik, Raudhaugene and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of metamorphic geology 2018-06, Vol.36 (5), p.591-602
Main Authors: Spengler, Dirk, Roermund, Herman L.M., Drury, Martyn R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713
cites cdi_FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713
container_end_page 602
container_issue 5
container_start_page 591
container_title Journal of metamorphic geology
container_volume 36
creator Spengler, Dirk
Roermund, Herman L.M.
Drury, Martyn R.
description We present new and compiled whole‐rock modal mineral, major and trace element data from extremely melt depleted but pyroxenite and garnet(‐ite)‐bearing Palaeoarchean East Greenland cratonic mantle, exposed as three isolated, tectonically strained orogenic peridotite bodies (Ugelvik, Raudhaugene and Midsundvatnet) in western Norway. The studied lithologies comprise besides spinel‐ and/or garnet‐bearing peridotite (dunite, harzburgite, lherzolite) garnet‐clinopyroxenite and partially olivine‐bearing garnet‐orthopyroxenite and ‐websterite. Chemical and modal data and spatial relationships between different rock types suggest deformation to have triggered mechanical mixing of garnet‐free dunite with garnet‐bearing enclosures that formed garnet‐peridotite. Inclusions of olivine in porphyroclastic minerals of pyroxenite show a primary origin of olivine in olivine‐bearing variants. Major element oxide abundances and ratios of websterite differ to those in rocks expected to form by reaction of peridotite with basaltic melts or silica‐rich fluids, but resemble those of Archean Al‐enriched komatiite (AEK) flows from Barberton and Commondale greenstone belts, South Africa. Websterite GdN/YbN, 0.49–0.65 (olivine‐free) and 0.73–0.85 (olivine‐bearing), overlaps that of two subgroups of AEK, GdN/YbN 0.25–0.55 and 0.77–0.90, with each of them being nearly indistinguishable from one another in not only rare earth element fractionation but also concentration. Websterite MgO content is high, 22.7–29.0 wt%, and Zr/Y is very low, 0.1–1.0. The other, non‐websteritic pyroxenites overlap—when mechanically mixed together with garnetite—in chemistry with that of AEK. It follows an origin of websterite and likely all pyroxenite that involves melting of a garnet‐bearing depleted mantle source. Pyroxene exsolution lamellae in the inferred solidus garnet in all lithological varieties require the pyroxenites to have crystallized in the majorite garnet stability field, at 3–4 GPa (90–120 km depth) at minimum 1,600°C. Consequently, we interpret the websterites to represent the first recognized deep plutonic crystallization products that formed from komatiite melts. The other pyroxenitic rocks are likely fragments of such crystallization products. An implication is that a mantle plume environment contributed to the formation of (one of) the worldwide oldest lithospheric mantle underneath the eastern Rae craton.
doi_str_mv 10.1111/jmg.12310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049912364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049912364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPyDSEwMae3YTuwRFSigIhaYLds9Vw75wk4F_fcYwsottzx3p3sRuiR4QVIt63a3IAUl-AjNCC94Tihhx2iGi5LmTBbyFJ3FWGNMaEHZDJW3AEP23rd69H6ELPpdp8d9gMx3mQ167Dtvs1Z3YwPZcAj9F3TJnaMTp5sIF399jt7u715XD_nmZf24utnkmnKO8xKk4VvOhRGc6cphYygwbU0pBHUSQNit0IxZS5zbMhDAS0dN5UwlJK8InaOrae8Q-o89xFHV_T506aQqMJMyvVqypK4nZUMfYwCnhuBbHQ6KYPUTi0qxqN9Ykl1O9tM3cPgfqqfn9TTxDaZYY-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049912364</pqid></control><display><type>article</type><title>Deep komatiite signature in cratonic mantle pyroxenite</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Spengler, Dirk ; Roermund, Herman L.M. ; Drury, Martyn R.</creator><creatorcontrib>Spengler, Dirk ; Roermund, Herman L.M. ; Drury, Martyn R.</creatorcontrib><description>We present new and compiled whole‐rock modal mineral, major and trace element data from extremely melt depleted but pyroxenite and garnet(‐ite)‐bearing Palaeoarchean East Greenland cratonic mantle, exposed as three isolated, tectonically strained orogenic peridotite bodies (Ugelvik, Raudhaugene and Midsundvatnet) in western Norway. The studied lithologies comprise besides spinel‐ and/or garnet‐bearing peridotite (dunite, harzburgite, lherzolite) garnet‐clinopyroxenite and partially olivine‐bearing garnet‐orthopyroxenite and ‐websterite. Chemical and modal data and spatial relationships between different rock types suggest deformation to have triggered mechanical mixing of garnet‐free dunite with garnet‐bearing enclosures that formed garnet‐peridotite. Inclusions of olivine in porphyroclastic minerals of pyroxenite show a primary origin of olivine in olivine‐bearing variants. Major element oxide abundances and ratios of websterite differ to those in rocks expected to form by reaction of peridotite with basaltic melts or silica‐rich fluids, but resemble those of Archean Al‐enriched komatiite (AEK) flows from Barberton and Commondale greenstone belts, South Africa. Websterite GdN/YbN, 0.49–0.65 (olivine‐free) and 0.73–0.85 (olivine‐bearing), overlaps that of two subgroups of AEK, GdN/YbN 0.25–0.55 and 0.77–0.90, with each of them being nearly indistinguishable from one another in not only rare earth element fractionation but also concentration. Websterite MgO content is high, 22.7–29.0 wt%, and Zr/Y is very low, 0.1–1.0. The other, non‐websteritic pyroxenites overlap—when mechanically mixed together with garnetite—in chemistry with that of AEK. It follows an origin of websterite and likely all pyroxenite that involves melting of a garnet‐bearing depleted mantle source. Pyroxene exsolution lamellae in the inferred solidus garnet in all lithological varieties require the pyroxenites to have crystallized in the majorite garnet stability field, at 3–4 GPa (90–120 km depth) at minimum 1,600°C. Consequently, we interpret the websterites to represent the first recognized deep plutonic crystallization products that formed from komatiite melts. The other pyroxenitic rocks are likely fragments of such crystallization products. An implication is that a mantle plume environment contributed to the formation of (one of) the worldwide oldest lithospheric mantle underneath the eastern Rae craton.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12310</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Archean ; Bearing ; cratonic mantle ; Cratons ; Crystallization ; Deformation ; Dunite ; Earth ; Fluids ; Fractionation ; Garnet ; garnet‐pyroxenite ; Isotopes ; komatiite ; Komatiites ; Lamellae ; Lithology ; Magma ; Mantle ; Mantle plumes ; Melts (crystal growth) ; Minerals ; Modal data ; Olivine ; Organic chemistry ; Peridotite ; pyroxene exsolution ; Rare earth elements ; Ratios ; Rock ; Rocks ; Silica ; Silicon dioxide ; Solidus ; Spatial data ; Stability ; Subgroups ; Trace elements ; Zirconium</subject><ispartof>Journal of metamorphic geology, 2018-06, Vol.36 (5), p.591-602</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713</citedby><cites>FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Spengler, Dirk</creatorcontrib><creatorcontrib>Roermund, Herman L.M.</creatorcontrib><creatorcontrib>Drury, Martyn R.</creatorcontrib><title>Deep komatiite signature in cratonic mantle pyroxenite</title><title>Journal of metamorphic geology</title><description>We present new and compiled whole‐rock modal mineral, major and trace element data from extremely melt depleted but pyroxenite and garnet(‐ite)‐bearing Palaeoarchean East Greenland cratonic mantle, exposed as three isolated, tectonically strained orogenic peridotite bodies (Ugelvik, Raudhaugene and Midsundvatnet) in western Norway. The studied lithologies comprise besides spinel‐ and/or garnet‐bearing peridotite (dunite, harzburgite, lherzolite) garnet‐clinopyroxenite and partially olivine‐bearing garnet‐orthopyroxenite and ‐websterite. Chemical and modal data and spatial relationships between different rock types suggest deformation to have triggered mechanical mixing of garnet‐free dunite with garnet‐bearing enclosures that formed garnet‐peridotite. Inclusions of olivine in porphyroclastic minerals of pyroxenite show a primary origin of olivine in olivine‐bearing variants. Major element oxide abundances and ratios of websterite differ to those in rocks expected to form by reaction of peridotite with basaltic melts or silica‐rich fluids, but resemble those of Archean Al‐enriched komatiite (AEK) flows from Barberton and Commondale greenstone belts, South Africa. Websterite GdN/YbN, 0.49–0.65 (olivine‐free) and 0.73–0.85 (olivine‐bearing), overlaps that of two subgroups of AEK, GdN/YbN 0.25–0.55 and 0.77–0.90, with each of them being nearly indistinguishable from one another in not only rare earth element fractionation but also concentration. Websterite MgO content is high, 22.7–29.0 wt%, and Zr/Y is very low, 0.1–1.0. The other, non‐websteritic pyroxenites overlap—when mechanically mixed together with garnetite—in chemistry with that of AEK. It follows an origin of websterite and likely all pyroxenite that involves melting of a garnet‐bearing depleted mantle source. Pyroxene exsolution lamellae in the inferred solidus garnet in all lithological varieties require the pyroxenites to have crystallized in the majorite garnet stability field, at 3–4 GPa (90–120 km depth) at minimum 1,600°C. Consequently, we interpret the websterites to represent the first recognized deep plutonic crystallization products that formed from komatiite melts. The other pyroxenitic rocks are likely fragments of such crystallization products. An implication is that a mantle plume environment contributed to the formation of (one of) the worldwide oldest lithospheric mantle underneath the eastern Rae craton.</description><subject>Archean</subject><subject>Bearing</subject><subject>cratonic mantle</subject><subject>Cratons</subject><subject>Crystallization</subject><subject>Deformation</subject><subject>Dunite</subject><subject>Earth</subject><subject>Fluids</subject><subject>Fractionation</subject><subject>Garnet</subject><subject>garnet‐pyroxenite</subject><subject>Isotopes</subject><subject>komatiite</subject><subject>Komatiites</subject><subject>Lamellae</subject><subject>Lithology</subject><subject>Magma</subject><subject>Mantle</subject><subject>Mantle plumes</subject><subject>Melts (crystal growth)</subject><subject>Minerals</subject><subject>Modal data</subject><subject>Olivine</subject><subject>Organic chemistry</subject><subject>Peridotite</subject><subject>pyroxene exsolution</subject><subject>Rare earth elements</subject><subject>Ratios</subject><subject>Rock</subject><subject>Rocks</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Solidus</subject><subject>Spatial data</subject><subject>Stability</subject><subject>Subgroups</subject><subject>Trace elements</subject><subject>Zirconium</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPyDSEwMae3YTuwRFSigIhaYLds9Vw75wk4F_fcYwsottzx3p3sRuiR4QVIt63a3IAUl-AjNCC94Tihhx2iGi5LmTBbyFJ3FWGNMaEHZDJW3AEP23rd69H6ELPpdp8d9gMx3mQ167Dtvs1Z3YwPZcAj9F3TJnaMTp5sIF399jt7u715XD_nmZf24utnkmnKO8xKk4VvOhRGc6cphYygwbU0pBHUSQNit0IxZS5zbMhDAS0dN5UwlJK8InaOrae8Q-o89xFHV_T506aQqMJMyvVqypK4nZUMfYwCnhuBbHQ6KYPUTi0qxqN9Ykl1O9tM3cPgfqqfn9TTxDaZYY-g</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Spengler, Dirk</creator><creator>Roermund, Herman L.M.</creator><creator>Drury, Martyn R.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201806</creationdate><title>Deep komatiite signature in cratonic mantle pyroxenite</title><author>Spengler, Dirk ; Roermund, Herman L.M. ; Drury, Martyn R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archean</topic><topic>Bearing</topic><topic>cratonic mantle</topic><topic>Cratons</topic><topic>Crystallization</topic><topic>Deformation</topic><topic>Dunite</topic><topic>Earth</topic><topic>Fluids</topic><topic>Fractionation</topic><topic>Garnet</topic><topic>garnet‐pyroxenite</topic><topic>Isotopes</topic><topic>komatiite</topic><topic>Komatiites</topic><topic>Lamellae</topic><topic>Lithology</topic><topic>Magma</topic><topic>Mantle</topic><topic>Mantle plumes</topic><topic>Melts (crystal growth)</topic><topic>Minerals</topic><topic>Modal data</topic><topic>Olivine</topic><topic>Organic chemistry</topic><topic>Peridotite</topic><topic>pyroxene exsolution</topic><topic>Rare earth elements</topic><topic>Ratios</topic><topic>Rock</topic><topic>Rocks</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Solidus</topic><topic>Spatial data</topic><topic>Stability</topic><topic>Subgroups</topic><topic>Trace elements</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spengler, Dirk</creatorcontrib><creatorcontrib>Roermund, Herman L.M.</creatorcontrib><creatorcontrib>Drury, Martyn R.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spengler, Dirk</au><au>Roermund, Herman L.M.</au><au>Drury, Martyn R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep komatiite signature in cratonic mantle pyroxenite</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>36</volume><issue>5</issue><spage>591</spage><epage>602</epage><pages>591-602</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>We present new and compiled whole‐rock modal mineral, major and trace element data from extremely melt depleted but pyroxenite and garnet(‐ite)‐bearing Palaeoarchean East Greenland cratonic mantle, exposed as three isolated, tectonically strained orogenic peridotite bodies (Ugelvik, Raudhaugene and Midsundvatnet) in western Norway. The studied lithologies comprise besides spinel‐ and/or garnet‐bearing peridotite (dunite, harzburgite, lherzolite) garnet‐clinopyroxenite and partially olivine‐bearing garnet‐orthopyroxenite and ‐websterite. Chemical and modal data and spatial relationships between different rock types suggest deformation to have triggered mechanical mixing of garnet‐free dunite with garnet‐bearing enclosures that formed garnet‐peridotite. Inclusions of olivine in porphyroclastic minerals of pyroxenite show a primary origin of olivine in olivine‐bearing variants. Major element oxide abundances and ratios of websterite differ to those in rocks expected to form by reaction of peridotite with basaltic melts or silica‐rich fluids, but resemble those of Archean Al‐enriched komatiite (AEK) flows from Barberton and Commondale greenstone belts, South Africa. Websterite GdN/YbN, 0.49–0.65 (olivine‐free) and 0.73–0.85 (olivine‐bearing), overlaps that of two subgroups of AEK, GdN/YbN 0.25–0.55 and 0.77–0.90, with each of them being nearly indistinguishable from one another in not only rare earth element fractionation but also concentration. Websterite MgO content is high, 22.7–29.0 wt%, and Zr/Y is very low, 0.1–1.0. The other, non‐websteritic pyroxenites overlap—when mechanically mixed together with garnetite—in chemistry with that of AEK. It follows an origin of websterite and likely all pyroxenite that involves melting of a garnet‐bearing depleted mantle source. Pyroxene exsolution lamellae in the inferred solidus garnet in all lithological varieties require the pyroxenites to have crystallized in the majorite garnet stability field, at 3–4 GPa (90–120 km depth) at minimum 1,600°C. Consequently, we interpret the websterites to represent the first recognized deep plutonic crystallization products that formed from komatiite melts. The other pyroxenitic rocks are likely fragments of such crystallization products. An implication is that a mantle plume environment contributed to the formation of (one of) the worldwide oldest lithospheric mantle underneath the eastern Rae craton.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12310</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4929
ispartof Journal of metamorphic geology, 2018-06, Vol.36 (5), p.591-602
issn 0263-4929
1525-1314
language eng
recordid cdi_proquest_journals_2049912364
source Wiley-Blackwell Read & Publish Collection
subjects Archean
Bearing
cratonic mantle
Cratons
Crystallization
Deformation
Dunite
Earth
Fluids
Fractionation
Garnet
garnet‐pyroxenite
Isotopes
komatiite
Komatiites
Lamellae
Lithology
Magma
Mantle
Mantle plumes
Melts (crystal growth)
Minerals
Modal data
Olivine
Organic chemistry
Peridotite
pyroxene exsolution
Rare earth elements
Ratios
Rock
Rocks
Silica
Silicon dioxide
Solidus
Spatial data
Stability
Subgroups
Trace elements
Zirconium
title Deep komatiite signature in cratonic mantle pyroxenite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20komatiite%20signature%20in%20cratonic%20mantle%20pyroxenite&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=Spengler,%20Dirk&rft.date=2018-06&rft.volume=36&rft.issue=5&rft.spage=591&rft.epage=602&rft.pages=591-602&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12310&rft_dat=%3Cproquest_cross%3E2049912364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3550-6e9b5d558b854a7f0bb3e4acb6883f9ee8cd8a44cc1ffd4e8e56f3b7fb7895713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049912364&rft_id=info:pmid/&rfr_iscdi=true