Loading…
Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis
•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical El...
Saved in:
Published in: | Electric power systems research 2017-08, Vol.149, p.30-45 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3 |
container_end_page | 45 |
container_issue | |
container_start_page | 30 |
container_title | Electric power systems research |
container_volume | 149 |
creator | Mendonça, P.L. Bonaldi, E.L. de Oliveira, L.E.L. Lambert-Torres, G. Borges da Silva, J.G. Borges da Silva, L.E. Salomon, C.P. Santana, W.C. Shinohara, A.H. |
description | •Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology.
Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided. |
doi_str_mv | 10.1016/j.epsr.2017.04.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2050601450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779617301542</els_id><sourcerecordid>2050601450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz62TNB9d8CJ-g-BB7yGbTpcs3WRNWsGj_9zU9SwEBsI878w8hFwwqBkwdbWpcZdTzYHpGkQNoA_IgrW6qTgIdUgW0Oi20nqpjslJzhsAUEstF-T7Dkd0o4-B2tDRbexwGHxY09hTH5zfeQwj7a0fpoS5fJU3Ygp2oC5uV1P-RTGsfUDaJf-Jga4xYLJjTJlOec66H8qI5F2B3vw62LFk0ZuS8ZV9PiNHvR0ynv_VU_L-cP9--1S9vD4-3968VK5p2Vj1TqqWdUK2THPOheXYyh6VWnIhO4b9skXeW25hteKNYkpJ0VgtXbvinbDNKbncx-5S_Jgwj2YTp_mObDhIUMCEhNLF910uxZwT9maX_NamL8PAzKbNxsymzWzagDDFdIGu9xCW9T89JpNd0eaw86kcbrro_8N_AOP1ie0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050601450</pqid></control><display><type>article</type><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><source>ScienceDirect Journals</source><creator>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</creator><creatorcontrib>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</creatorcontrib><description>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology.
Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2017.04.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Efficiency ; Electric generators ; Electric power demand ; Electric power systems ; Electrical signature analysis ; Electricity ; Electricity consumption ; Engines ; Failure ; Failure analysis ; Failure patterns ; Fault detection ; Generators ; Internal combustion engines ; Maintenance ; Methodology ; Misalignment ; Rotation ; Scale models ; Short circuits ; Signal analysis ; Signature analysis ; Synchronous generators ; Unbalance</subject><ispartof>Electric power systems research, 2017-08, Vol.149, p.30-45</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</citedby><cites>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendonça, P.L.</creatorcontrib><creatorcontrib>Bonaldi, E.L.</creatorcontrib><creatorcontrib>de Oliveira, L.E.L.</creatorcontrib><creatorcontrib>Lambert-Torres, G.</creatorcontrib><creatorcontrib>Borges da Silva, J.G.</creatorcontrib><creatorcontrib>Borges da Silva, L.E.</creatorcontrib><creatorcontrib>Salomon, C.P.</creatorcontrib><creatorcontrib>Santana, W.C.</creatorcontrib><creatorcontrib>Shinohara, A.H.</creatorcontrib><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><title>Electric power systems research</title><description>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology.
Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</description><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Electric generators</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electrical signature analysis</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Engines</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure patterns</subject><subject>Fault detection</subject><subject>Generators</subject><subject>Internal combustion engines</subject><subject>Maintenance</subject><subject>Methodology</subject><subject>Misalignment</subject><subject>Rotation</subject><subject>Scale models</subject><subject>Short circuits</subject><subject>Signal analysis</subject><subject>Signature analysis</subject><subject>Synchronous generators</subject><subject>Unbalance</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz62TNB9d8CJ-g-BB7yGbTpcs3WRNWsGj_9zU9SwEBsI878w8hFwwqBkwdbWpcZdTzYHpGkQNoA_IgrW6qTgIdUgW0Oi20nqpjslJzhsAUEstF-T7Dkd0o4-B2tDRbexwGHxY09hTH5zfeQwj7a0fpoS5fJU3Ygp2oC5uV1P-RTGsfUDaJf-Jga4xYLJjTJlOec66H8qI5F2B3vw62LFk0ZuS8ZV9PiNHvR0ynv_VU_L-cP9--1S9vD4-3968VK5p2Vj1TqqWdUK2THPOheXYyh6VWnIhO4b9skXeW25hteKNYkpJ0VgtXbvinbDNKbncx-5S_Jgwj2YTp_mObDhIUMCEhNLF910uxZwT9maX_NamL8PAzKbNxsymzWzagDDFdIGu9xCW9T89JpNd0eaw86kcbrro_8N_AOP1ie0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mendonça, P.L.</creator><creator>Bonaldi, E.L.</creator><creator>de Oliveira, L.E.L.</creator><creator>Lambert-Torres, G.</creator><creator>Borges da Silva, J.G.</creator><creator>Borges da Silva, L.E.</creator><creator>Salomon, C.P.</creator><creator>Santana, W.C.</creator><creator>Shinohara, A.H.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170801</creationdate><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><author>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Electric generators</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electrical signature analysis</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Engines</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure patterns</topic><topic>Fault detection</topic><topic>Generators</topic><topic>Internal combustion engines</topic><topic>Maintenance</topic><topic>Methodology</topic><topic>Misalignment</topic><topic>Rotation</topic><topic>Scale models</topic><topic>Short circuits</topic><topic>Signal analysis</topic><topic>Signature analysis</topic><topic>Synchronous generators</topic><topic>Unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendonça, P.L.</creatorcontrib><creatorcontrib>Bonaldi, E.L.</creatorcontrib><creatorcontrib>de Oliveira, L.E.L.</creatorcontrib><creatorcontrib>Lambert-Torres, G.</creatorcontrib><creatorcontrib>Borges da Silva, J.G.</creatorcontrib><creatorcontrib>Borges da Silva, L.E.</creatorcontrib><creatorcontrib>Salomon, C.P.</creatorcontrib><creatorcontrib>Santana, W.C.</creatorcontrib><creatorcontrib>Shinohara, A.H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendonça, P.L.</au><au>Bonaldi, E.L.</au><au>de Oliveira, L.E.L.</au><au>Lambert-Torres, G.</au><au>Borges da Silva, J.G.</au><au>Borges da Silva, L.E.</au><au>Salomon, C.P.</au><au>Santana, W.C.</au><au>Shinohara, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</atitle><jtitle>Electric power systems research</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>149</volume><spage>30</spage><epage>45</epage><pages>30-45</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology.
Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2017.04.007</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2017-08, Vol.149, p.30-45 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2050601450 |
source | ScienceDirect Journals |
subjects | Computer simulation Efficiency Electric generators Electric power demand Electric power systems Electrical signature analysis Electricity Electricity consumption Engines Failure Failure analysis Failure patterns Fault detection Generators Internal combustion engines Maintenance Methodology Misalignment Rotation Scale models Short circuits Signal analysis Signature analysis Synchronous generators Unbalance |
title | Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20modelling%20of%20incipient%20failures%20in%20internal%20combustion%20engine%20driven%20generators%20using%20Electrical%20Signature%20Analysis&rft.jtitle=Electric%20power%20systems%20research&rft.au=Mendon%C3%A7a,%20P.L.&rft.date=2017-08-01&rft.volume=149&rft.spage=30&rft.epage=45&rft.pages=30-45&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2017.04.007&rft_dat=%3Cproquest_cross%3E2050601450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2050601450&rft_id=info:pmid/&rfr_iscdi=true |