Loading…

Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis

•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical El...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research 2017-08, Vol.149, p.30-45
Main Authors: Mendonça, P.L., Bonaldi, E.L., de Oliveira, L.E.L., Lambert-Torres, G., Borges da Silva, J.G., Borges da Silva, L.E., Salomon, C.P., Santana, W.C., Shinohara, A.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3
cites cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3
container_end_page 45
container_issue
container_start_page 30
container_title Electric power systems research
container_volume 149
creator Mendonça, P.L.
Bonaldi, E.L.
de Oliveira, L.E.L.
Lambert-Torres, G.
Borges da Silva, J.G.
Borges da Silva, L.E.
Salomon, C.P.
Santana, W.C.
Shinohara, A.H.
description •Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology. Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.
doi_str_mv 10.1016/j.epsr.2017.04.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2050601450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779617301542</els_id><sourcerecordid>2050601450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz62TNB9d8CJ-g-BB7yGbTpcs3WRNWsGj_9zU9SwEBsI878w8hFwwqBkwdbWpcZdTzYHpGkQNoA_IgrW6qTgIdUgW0Oi20nqpjslJzhsAUEstF-T7Dkd0o4-B2tDRbexwGHxY09hTH5zfeQwj7a0fpoS5fJU3Ygp2oC5uV1P-RTGsfUDaJf-Jga4xYLJjTJlOec66H8qI5F2B3vw62LFk0ZuS8ZV9PiNHvR0ynv_VU_L-cP9--1S9vD4-3968VK5p2Vj1TqqWdUK2THPOheXYyh6VWnIhO4b9skXeW25hteKNYkpJ0VgtXbvinbDNKbncx-5S_Jgwj2YTp_mObDhIUMCEhNLF910uxZwT9maX_NamL8PAzKbNxsymzWzagDDFdIGu9xCW9T89JpNd0eaw86kcbrro_8N_AOP1ie0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050601450</pqid></control><display><type>article</type><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><source>ScienceDirect Journals</source><creator>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</creator><creatorcontrib>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</creatorcontrib><description>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology. Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2017.04.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computer simulation ; Efficiency ; Electric generators ; Electric power demand ; Electric power systems ; Electrical signature analysis ; Electricity ; Electricity consumption ; Engines ; Failure ; Failure analysis ; Failure patterns ; Fault detection ; Generators ; Internal combustion engines ; Maintenance ; Methodology ; Misalignment ; Rotation ; Scale models ; Short circuits ; Signal analysis ; Signature analysis ; Synchronous generators ; Unbalance</subject><ispartof>Electric power systems research, 2017-08, Vol.149, p.30-45</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</citedby><cites>FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendonça, P.L.</creatorcontrib><creatorcontrib>Bonaldi, E.L.</creatorcontrib><creatorcontrib>de Oliveira, L.E.L.</creatorcontrib><creatorcontrib>Lambert-Torres, G.</creatorcontrib><creatorcontrib>Borges da Silva, J.G.</creatorcontrib><creatorcontrib>Borges da Silva, L.E.</creatorcontrib><creatorcontrib>Salomon, C.P.</creatorcontrib><creatorcontrib>Santana, W.C.</creatorcontrib><creatorcontrib>Shinohara, A.H.</creatorcontrib><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><title>Electric power systems research</title><description>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology. Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</description><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Electric generators</subject><subject>Electric power demand</subject><subject>Electric power systems</subject><subject>Electrical signature analysis</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Engines</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure patterns</subject><subject>Fault detection</subject><subject>Generators</subject><subject>Internal combustion engines</subject><subject>Maintenance</subject><subject>Methodology</subject><subject>Misalignment</subject><subject>Rotation</subject><subject>Scale models</subject><subject>Short circuits</subject><subject>Signal analysis</subject><subject>Signature analysis</subject><subject>Synchronous generators</subject><subject>Unbalance</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz62TNB9d8CJ-g-BB7yGbTpcs3WRNWsGj_9zU9SwEBsI878w8hFwwqBkwdbWpcZdTzYHpGkQNoA_IgrW6qTgIdUgW0Oi20nqpjslJzhsAUEstF-T7Dkd0o4-B2tDRbexwGHxY09hTH5zfeQwj7a0fpoS5fJU3Ygp2oC5uV1P-RTGsfUDaJf-Jga4xYLJjTJlOec66H8qI5F2B3vw62LFk0ZuS8ZV9PiNHvR0ynv_VU_L-cP9--1S9vD4-3968VK5p2Vj1TqqWdUK2THPOheXYyh6VWnIhO4b9skXeW25hteKNYkpJ0VgtXbvinbDNKbncx-5S_Jgwj2YTp_mObDhIUMCEhNLF910uxZwT9maX_NamL8PAzKbNxsymzWzagDDFdIGu9xCW9T89JpNd0eaw86kcbrro_8N_AOP1ie0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mendonça, P.L.</creator><creator>Bonaldi, E.L.</creator><creator>de Oliveira, L.E.L.</creator><creator>Lambert-Torres, G.</creator><creator>Borges da Silva, J.G.</creator><creator>Borges da Silva, L.E.</creator><creator>Salomon, C.P.</creator><creator>Santana, W.C.</creator><creator>Shinohara, A.H.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170801</creationdate><title>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</title><author>Mendonça, P.L. ; Bonaldi, E.L. ; de Oliveira, L.E.L. ; Lambert-Torres, G. ; Borges da Silva, J.G. ; Borges da Silva, L.E. ; Salomon, C.P. ; Santana, W.C. ; Shinohara, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Electric generators</topic><topic>Electric power demand</topic><topic>Electric power systems</topic><topic>Electrical signature analysis</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Engines</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure patterns</topic><topic>Fault detection</topic><topic>Generators</topic><topic>Internal combustion engines</topic><topic>Maintenance</topic><topic>Methodology</topic><topic>Misalignment</topic><topic>Rotation</topic><topic>Scale models</topic><topic>Short circuits</topic><topic>Signal analysis</topic><topic>Signature analysis</topic><topic>Synchronous generators</topic><topic>Unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendonça, P.L.</creatorcontrib><creatorcontrib>Bonaldi, E.L.</creatorcontrib><creatorcontrib>de Oliveira, L.E.L.</creatorcontrib><creatorcontrib>Lambert-Torres, G.</creatorcontrib><creatorcontrib>Borges da Silva, J.G.</creatorcontrib><creatorcontrib>Borges da Silva, L.E.</creatorcontrib><creatorcontrib>Salomon, C.P.</creatorcontrib><creatorcontrib>Santana, W.C.</creatorcontrib><creatorcontrib>Shinohara, A.H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendonça, P.L.</au><au>Bonaldi, E.L.</au><au>de Oliveira, L.E.L.</au><au>Lambert-Torres, G.</au><au>Borges da Silva, J.G.</au><au>Borges da Silva, L.E.</au><au>Salomon, C.P.</au><au>Santana, W.C.</au><au>Shinohara, A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis</atitle><jtitle>Electric power systems research</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>149</volume><spage>30</spage><epage>45</epage><pages>30-45</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Early detection of electrical and mechanical failures in internal combustion engine generators.•Methodology for detecting incipient faults in prime mover, coupling and generator.•Modelling failure patterns in thermoelectric generators using Electrical Signature Analysis.•Proposition of practical Electrical Signature Analysis failure pattern methodology. Condition-based maintenance of electric generators have been gaining increasing importance due to the electricity demand and the criticality that this equipment represents to electrical power systems. In this context, this paper proposes a methodology and a system for detection and modeling of incipient failures in the components of internal combustion engine-driven generators based on Electrical Signature Analysis (ESA). The proposed methodology enables the detection of incipient faults both in the prime mover and in the coupled synchronous generator, only relying on measurements of the generator stator voltages and currents. The proposed ESA failure patterns are based on defined frequencies and the structural features of the machine, so they can be reproduced in a wide range of engine-generators sets. The main advantages of the proposed system are its low intrusiveness, feasible installation and cost efficiency. A scale model laboratory has been designed to simulate faults in a small diesel generator and apply the ESA methodology to detect these faults and obtain the failure patterns. Experimental results are presented to prove the effectiveness of the proposed methodology. The main results include the findings that exciter generator unbalance induces electrical unbalance components, exciter diode short circuit induces even harmonics, intake valve failure and piston ring failure induce multiples of rotation frequency components, and mechanical misalignment of the engine generator set induces multiples of half order speed frequency components on ESA. Moreover, the proposed prototype is installed at two large in-service internal combustion engine-driven generators and examples of signal analysis are provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2017.04.007</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2017-08, Vol.149, p.30-45
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2050601450
source ScienceDirect Journals
subjects Computer simulation
Efficiency
Electric generators
Electric power demand
Electric power systems
Electrical signature analysis
Electricity
Electricity consumption
Engines
Failure
Failure analysis
Failure patterns
Fault detection
Generators
Internal combustion engines
Maintenance
Methodology
Misalignment
Rotation
Scale models
Short circuits
Signal analysis
Signature analysis
Synchronous generators
Unbalance
title Detection and modelling of incipient failures in internal combustion engine driven generators using Electrical Signature Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20modelling%20of%20incipient%20failures%20in%20internal%20combustion%20engine%20driven%20generators%20using%20Electrical%20Signature%20Analysis&rft.jtitle=Electric%20power%20systems%20research&rft.au=Mendon%C3%A7a,%20P.L.&rft.date=2017-08-01&rft.volume=149&rft.spage=30&rft.epage=45&rft.pages=30-45&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2017.04.007&rft_dat=%3Cproquest_cross%3E2050601450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-fc5681d458172224a2e85fe669245d1ef98e2fa2a0bb236166543a75c8b2d4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2050601450&rft_id=info:pmid/&rfr_iscdi=true